"Yo no vengo a decir un discurso. ..."

Gabriel Garcia Marquez, Zipaquirá, 1944

[...] **o mar** uma língua de água que nos uniu...

Agustina Bessa-Luís Em "Portugal – Brasil"

P&D em CAMPOS HIDROTERMAIS PROFUNDOS

Context: Challenges and Opportunities

About 5% of annual global trade is transported through the canal which sums up to 815.000 ships Context: Challenges and Opportunities

Ocean risk governance

April 2010: Deepwater Horizon, Golf of Mexico

Uncertainty in the oil price

Petrobras' forecasts for oil price early 2014

Crude oil price variation over last year january 2015

...sobre as dinâmicas e geografias do Petróleo e Gás: Um novo mapa da auto-suficiência em formação 2000-2030?

A dependência elevada irá localizar-se sobretudo nas economias industrializadas e sociedades em urbanização emergente na região da Ásia-Pacífico (China e Índia). Com algumas excepções na Europa, este continente permanecerá com dependência elevada de importação de petróleo. Os EUA regressam à independência energética. O potencial elevado de produção gasífera de hidratos de metano coloca o Japão nessa rota. Mais de um terço das economias industriais avançadas alcança a autonomia petrolífera.

Autosuficiência em petróleo e/ou gás (comprovada e potencial)

Fontes: Energy Information Administration, 2012 International Energy Agency, 2012 Maior importador líquido mundial de petróleo e gás em Outubro 2013

Dependência elevada da importação de petróleo e gás

"Oil & Gas" – new challenges...

Conventional reservoirs small volumes easy to develop

> Increased pricing and Improved technology

ight Gas Sands Heav Gas Coalbe Shales Methane Gas Hydrates

-Illedium

Dalitu

Low Perm

Unconventional reservoirs

large volumes difficult to develop

Camada Pré-Sal Por suas características geológicas, marca o início de um novo modelo exploratório, com tecnologia mais resistente à corrosão, altas temperaturas e pressão.

7.000m 2007 Bacia de Santos (Tupi)

Context: Challenges and Opportunities

Brazilian Equatorial Basins

Reconcavo Basin

Brazilian Pre-Salt

Ghana Jubilee

Niger Delta

African Pre-Salt

Context: Challenges and Opportunities

Pirate Attack Saudi Super-Tank seized off Kenian Cost 16th November 2008

"El Problema del Petróleo y la Energía"

Pedro Nel Gomez, 1936 Museo de Antioquia, Medellin

Patterns of technical change

Source: Branscomb, Morse & Roberts (2001): www.atp.nist.gov/eao/gcr_787.pdf

Why Science and Innovation? ...valuing human resources!

Pedro Nel Gomez, "La sensualidad del trópico". Fragmento del mural "Homenaje al pueblo antioqueño", 1940. Casa Museo Pedro Nel Gómez

It is people who matter ultimately!

Objectives:

• Build and promote an **INTERNATIONAL AGENDA of technology development** towards the sustainable exploration of the Atlantic, promoting endogenous growth:

+atlantic – to identify challenges and opportunities

 Promote an INTERNATIONAL OBSERVATORY to monitor, assess and foster the international agenda: www.oipg.org

Founding partners: Brazil; Colombia, Portugal, Germany
 Other: US, Norway, Angola

Contents

PART I: Characterization and Analysis

Context: Challenges and Opportunities Technological trends: uncertainty and complexity Comparative assessment of National Technology Strategies: Norway, Brazil, ...

PART II: A contribution for a potential intl. AGENDA (to be discussed...)

Rational: four technological platforms

- 1. Ocean Monitoring, Control and Surveillance Systems (MCS) for Risk Governance
- 2. Ocean Subsea
- 3. Ocean Surface

4. Ports Technology and Systems

Horizontal programs: capacity building, internationalization, specialization Funding...

Context: Challenges and Opportunities

Portuguese current economic exclusive zone and continental platform shelve extension

Actual continental shelf:

- Continental Portugal 327,667 km²
- Azores Islands 953,633 km²
- Madeira Islands 446,108 km²
- Total 1,727,408 km²

Proposal of extension:

- Additional 2.15 million square kilometers
- Resulting in an EEZ with an area of more than 3,877,408 km²

LIMITES PREVISIVEIS DA PLATAFORMA CONTINENTAL PORTUGUESIS

AFORES

MADEIRA

ALVAMENTO

4/03/2014 02:00

Liquid Precipitation Rate 0.2 0.3 0.5 1.0 2.0 5.0 5.0 10 20 mmillion

0.1

Prouzes Precipitation Rate

Profiler

ocean observatories - new way of looking at oceans

... Pre-salt and deep-sea challenges

subsea versus surface technology changing paradigms for oil and gas exploration

DISRUPTIVE

CONTINUITY

From Automation to "i-Fields"

Technological trends: uncertainty and complexity

deep sea mining: a new possibility?

Migratory fluxes and the increasing North European **Observation 1** Schengen area **Portuguese Diaspora** Graduates from non-hub areas within the EU attracted to Norway - easy immigration due to Schengen Hubs with education institution highly Attracted by: subsea 7 competent on oil and gas related subjects. Local economy struggling - Norway attractive job market Highly qualified engineers Complete domain of Portuguese and Observation 4 Technip **English languages** India educates 375 000 engineering graduates each Portuguese economy year. Has the capacity to struggling, oil and gas supply all hubs with the boom in former colonies graduates required. Local **Engineering multinationals** offers opportunities content and immigration policy at destinations are companies moving to Portugal: constraints for mobility **Observation 2** Technip Stable demand Volatile demand NOV - National Oil Well Varco Lacking local education possibilities leads to education abroad Subsea 7 ** Returns to local country as graduate for

key competence holder

Contents

PART I: Characterization and Analysis

Context: Challenges and Opportunities Technological trends: uncertainty and complexity Comparative assessment of National Technology Strategies: Norway, Brazil, A

PART II: A contribution for a potential intl. AGENDA (to be discussed...)

Rational: four technological platforms

- 1. Ocean Monitoring, Control and Surveillance Systems (MCS) for Risk Governance
- 2. Ocean Subsea
- 3. Ocean Surface

4. Ports Technology and Systems

Horizontal programs: capacity building, internationalization, specialization Funding...

ENGINEERING AND TECHNOLOGY DEVELOPMENT

OCEAN Monitoring, Control and Surveillance

OCEAN SUBSEA technologies and Systems

OCEAN SURFACE technologies and Systems

PORTS technologies and Systems

TP1. OCEAN Monitoring,	TP2. OCEAN SUBSEA
Control and Surveillance	DEEP SEA EXPLORATION DEEP SEA OIL&GAS DEEP SEA MINING
OFFSHORE RENEWABLES TOPSIDE OIL&GAS SHIPBUILDING AND REPAIR OFFSHORE AQUACULTURE	
TP3. OCEAN SURFACE	TP4. PORTS

OCEAN Monitoring, Control and Surveillance

OCEAN SUBSEA technologies and Systems

OCEAN SURFACE technologies and Systems

PORTS technologies and Systems

ENGINEERING AND TECHNOLOGY DEVELOPMENT

Platform 1: Ocean monitoring, control and surveillance (MCS)

Platform 1: Ocean monitoring, control and surveillance (MCS)

CH1.1 Low-cost multi-use buoys

CH1.2 Integrated computational models for better oceanic behaviour prediction

CH1.3 Networked autonomous platforms, with monitoring devices, seamless integration and control architectures

CH1.4 Image processing algorithms to control and improve fishing activities

CH1.5 Miniaturised satellites for advanced low cost monitoring capabilities

CH1.6 High Altitude Long Endurance (HALE) Unmanned Autonomous Vehicle (UAV) for long standing monitoring capability

CH1.5 Miniaturised satellites for advanced low cost monitoring capabilities

Includes suggestions by: Tekever, CEIIA, Von Karman Institute, ESTEC

CH1.5 Miniaturised satellites for advanced low cost monitoring capabilities

Challenge: To develop a nanosat constellation that can contribute to an economical and effective MCS system, allowing also technology-based companies to enter emerging markets **Includes suggestions by:** Tekever, CEIIA, Von Karman Institute, ESTEC

CH1.6 High Altitude Long Endurance (HALE) Unmanned Autonomous Vehicle (UAV) for long standing monitoring capability

source: Northrop Grumman (2015)

source: Israeli Air Force (2014)

Includes suggestions by: AFA, IDMEC, UAVISION, TEKEVER, Spinworks, CEIIA

CH1.6 High Altitude Long Endurance (HALE) Unmanned Autonomous Vehicle (UAV) for long standing monitoring capability

Challenge: a breakthrough UAV HALE project towards high-end Class 2 and Class 3 MALE UAV

Includes suggestions by: AFA, IDMEC, UAVISION, TEKEVER, Spinworks, CEIIA

Platform 2 - Ocean subsea technology

Platform 2 - Ocean subsea technology

CH2.1 Marine robotic systems for deep sea floor characterization

CH2.2 Lander for Deep Sea long term presence and operation

CH2.3 Advanced subsea mooring ropes for ocean exploitation new challenges

CH2.4 Subsea cables tracking device

CH2.5 CFD novel numerical analysis applications to the subsea

- **CH2.6** Big Data Analytics for Monitoring Data Integration and Statistical Handling
- CH2.7 SURF in-situ inspection based on GMR technology

CH2.1 Marine robotic systems for deep sea floor characterization

source: MBARI

source: RMS Titanic (2012)

Includes suggestions by: EMEPC, IPMA, ISR-DSOR, , LSTS, DOP Azores, CEIIA, ARGUS, Oceanscan, TEKEVER, CREMINER

CH2.1 Marine robotic systems for deep sea floor characterization

source: MORPH

source: Erotogics (2014)

source: Vicorob (2014)

Challenge: To develop a deep sea AUV system that can efficiently characterize complex sea floor and be at the same time commercially viable in an extremely competitive international market

Includes suggestions by: EMEPC, IPMA, ISR-DSOR, , LSTS, DOP Azores, CEIIA, ARGUS, Oceanscan, TEKEVER, CREMINER

Platform 3 – Ocean surface technologies

Platform 3 – Ocean surface technologies

CH3.1 Design and construction fixed deep-water foun for offshore wind integration Conditioning Maint Systems

- **CH3.2** Design, construction and testing of innovativ energy converter
- **CH3.3** Offshore Platform to serve as a test bench for devices
- **CH3.4** Engineering Design for a new generation FPSC CO2 levels
- **CH3.5** Integration of CMS in existing Top-side supplie O&G industry
- **CH3.6** Design and construction of a deep-offshore aq system.

CH3.4 Engineering Design for a new generation FPSO for high CO2 levels

CH3.5 Integration of CMS in existing Top-side supplies for the O&G industry

Platform 4 – Port technology and systems

Logistics	Safety & Security
Green Harbor	Port of the Future

Platform 4 – Port technology and systems

CH4.1 Janela Única Logística (JUL);

CH4.2 Introduction of the Liquefied Natural Gas and Renewable Energy Devices in the Port structure;

CH4.3 Best practices development to use residual waters cleaning stations during the ships ballast liquid change;

CH4.4 Monitoring and safety systems for the maritime access, port infrastructure and superstructure;

CH4.5 Interface logistics and monitoring of the inland accessibilities;

CH4.6 Port flexible spatial planning integrated with the hinterland regarding the spatial planning, urban areas and interface with the inland accessibilities;

To be complemented with **Horizontal Measures**:

- HP1: Integrated Ocean Observatory Initiative
- **HP2:** Promoting Public Policies, Innovation Dynamics and Risk Governance
- **HP3:** Capacitation, Training and Qualification of Human Resources
- **HP4:** Science Dissemination and Divulgation
- **HP5:** Promoting Internationalization and access to emerging Markets
- **HP6:** Promoting new technology-based companies and players and their integration in industrial value chains
- **HP7:** Identify Funding Sources and help raising the necessary resources

Project Team in PORTUGAL:

LARSyS, Laboratório Associado em Robótica e Sistemas de Engenharia (www.larsys.pt),

Center for Innovation, Technology and Policy Research of IST, **IN+** (<u>http://in3.dem.ist.utl.pt/</u>)

Manuel Heitor, <u>mheitor@ist.utl.pt</u> Rui Pimentel, <u>ruipimentelsantos@tecnico.ulisboa.pt</u> Diogo Santiago Guilherme Farinha Leonardo Santos

WAVEC, <u>http://www.wavec.org/en:</u> António Sarmento Pedro Pires Graça Jorge

CEiiA, <u>http://www.ceiia.com</u> José Rui Felizardo Artur Costa Sónia Romão In close collaboration with:

Instituto de Sistemas e Robótica, ISR

António Pascoal Luís Sebastião

MARETEC Ramiro Neves Rodrigo Fernandes

Madeira Interactive Technologies Institute, MITI Nuno Nunes

Horizontes, Francisco Antonio Cano, 1913 (Museo de Antioquia)

+atlantic

...towards an INTERNATIONAL AGENDA of technology development and risk governance, promoting industrialization and endogenous growth

an INTERNATIONAL OBSERVATORY

to monitor, assess and foster the international agenda

"No esperen nada del siglo XXI, que es el siglo XXI el que lo espera todo de ustedes. ..."

Gabriel Garcia Marquez, UNESCO/BID, Paris, 08/03/1999