

Moving-Object Management method of combat system using main memory DBMS

Content

- 1. Naval Combat System
- 2. Track Management System
- 3. Main Memory Database
- 4. Moving-Object Database
- 5. J-Track Management
- 6. Performance

1. Combat System

System for command and control, fire control, and command support by integrating the available sensors, weapon, navigation and communication systems

2. Combat System Architechure

28-11

2. Combat System Architechure

2. Combat System Architechure

+ High speed Transaction processing Database

3. Track Fusion

4. Aegis Modernization(AMOD)

5. Open Architecture TM

Joint Track Management Alignment

LOCKHEED MARTIN

- + Align AMOD and SSDS Track Management to a Common Architecture
 - Provide Consistent Functional Allocation, Data Representation and Attributes
 - Incorporate Reusable System Track Manager and Track Server Components

+ Provides Hierarchical Track File(System Level – Source Level)

- Track Server Standard Access Interface for Client Applications
- Track Manager Integrates Track Data Source via Common Interface
- Extensible for New Track Data Sources
- + Provides Two Complete Versions of Live Training Tracks
 - Allows Training Override of Multiple Attributes
 - Training Tracks Can be Physically Relocated From Live Location.
- + Provides Dual Ownship Tactical and Training
 - Allows Training View to be Repositioned with No Impact to Tactical View

Ref. The Modernization of the Aegis Fleet with Open Architecture , Lockheed Martin, '11. 09

6. Main Memory Database

7. MMDB & DRDB

7. MMDB & DRDB

	MMDB	DRDB
Data model	Relational	Relational
System Structure	Client/Server and inner DB	Client/Server
Server Structure	Multi-Thread	Multi-Thread / Multi-Process
CPU Use Rate	lower CPU use rate using simple search Algorithm	Higher CPU use rate using complicate search Algorithm
DISK I/O	Minimum disk I/O in order to Recovery	Normal disk I/O in order to Select, Insert, Update, Delete

8. Moving Object DataBase

9. Kairos Database Overview

A. Spatio-Temporal Data Type

DR DB Data Type

ID	Gender	Name	Current position(X,Y)
01	man	Bred	(120,150)
02	woman	Ray	(130,140)
03	woman	Ray	(160,150)

MO DB Data Type

B. Spatio-Temporal Index

- + Spatio-temporal index of a 3D R*- Tree Structure
- + Use minimum bounding rectangle information

C. Spatio-Temporal Operator

Operator group	Description	Sample	
Spatio- Temporal Relation Operators	Analysis spatial phase relationship between moving spatial object- moving spatial object or moving spatial object-spatial object Operator : Intersects, Overlaps, Crosses, Within, Contain, Disjoint, Equals, Touches	Dimension (Object A ≥ 1) and Dimension (Object B ≥ 1) Polygon vs Polygon LineString vs Polygon LineString vs LineString	
Set Operators	- One moving spatial object or moving spatial objects. - Operator : Union, Difference, Intersection	Otjiet A Objet B LinsString Polygon	
Trajectory Relation Operators	Analysis phase relationship of trajectory of moving object. Operator : Enter, Leaves, Meets, Passes, Insides		
Temporal Relation Operators	- Analysis time phase relationship between temporal object – temporal object Operator : Contains, Overlaps, Precedes	Polygon vs Polygon	

C. Spatio-Temporal Operator

+ Trajectory Relation Operators

Return Value	Operator name	Туре	Description
Int	ST_ENTER(A,B)	Mgeometry	The operator will be evaluated that "A" moving-object entered into "B" moving-object from outside to inside
Int	ST_LEAVES(A,B)	Mgeometry	The operator will be evaluated that "A" moving-object entered into "B" moving-object from inside to outside
Int	ST_PASSES(A,B)	Mgeometry	The operator will be evaluated that "A" moving-object penetrated "B" moving-object
Int	ST_MEETS(A,B)	Mgeometry	The operator will be evaluated that they met at the border of "A" and "B" object
Int	ST_INSIDES(A,B)	Mgeometry	The operator will be evaluated that "A" moving-object is staying in the "B" moving-object inside.

10. J-TM Design

11. J-TM Procedure

+ Joint track Management Procedure using moving-object database

Create table with a reference to parameter for the target fusion's available condition

Database API (application program interface) calls using triggers when sensor track information is input

Determine fusion availability according to the target's location using the moving object database function

Insert results into the fusion table

Return the fusion table value from the database

11. J-TM API Design

11. J-TM API List

+ Provide About 100 API

IFF Code **Initial Schema** Set Fusion Get Conflict Table **Delete Track** Get Confirm **Set Correlation** Get Alert Set DeFusion Set Parameter Reset Schema Save Track **Get Correlation** Set Track

12. Performance

+ Spatio Query Performance

- Test Environment
 - Windows 2003/Xeon * 16CPU, 64G Memory
- Test Model
 - Performance of Spatio Relation Operators
 - Data : 248,115 Polygons

- Result
 - MM DBMS(Kairos DBMS) is 10 times faster than other DR DBMS

13. Conclusion

+ Many Benefit of Implementation of Joint-TM

- Databases can replace the track-management function of combat management systems
- As a common module, it can also be applied to various combat management systems

Benefit	Explanation	
Reduction in Time to Field	 Decreased development and acquisition cycle times to field new capabilities Faster integration of open standards based systems 	
Improved Interoperability	- Use of common warfighting applications (joint-TM)	
Reduction in Risk	 Leverage proven reusable components Test early and often in the developmental cycle to minimize risk of delivering non- interoperable products 	
Cost Avoidance	 Cost avoidance from software re-use and use commodity COTS products at optimum prices Reduced training and streamlined lifecycle support 	

Thank you

Appendix

C. Dual Replication

D. RD-DBMS SYNC

