

COST ESTIMATION AND COST RISK ANALYSIS IN EARLY DESIGN STAGES OF NAVAL PROJECTS

Michael Rudius

MTG | VORGES methodology

- Naval Design Agency for the consultancy of the contracting authority
- Planning and conception of surface naval vessels
- Independent consultancy without manufacturer interests
- Year of foundation: 1966

Cooperation COTECMAR | ARC | MTG

Plataforma Estratégica de Superficie (PES)

Ο

 \mathbf{O}

 \bigcirc

Req.-Workshop → harmonized list of req's (2013)

Concept design PES V1

incl. cost estimation (2014)

Comparison of results of different tools (2014/2015)

Concept design PES V2 based on ARC's selection and modified req's

incl. Cost estimation and cost risk analysis (2015)

Way ahead:

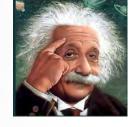
- Development of further conceptual designs in order to finalize functional requirements
- Transfer of technology and Know-How

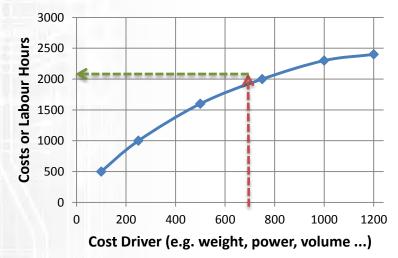
Calculation of numerical variants / development of an effectiveness model incl. cost estimation (2014/2015)

> Selection of a numerical variant by ARC (2015)

INDEPENDENT NAVAL CONSULTANTS

Definition of Cost Estimation


- Cost estimation is the systematic elaboration of costs based on the available data and the most probable costs at the time of estimation.
- Cost estimation is challenging in early stages of the project due to:
 - Lack of technical and cost data
 - New/undefined technologies
 - Unclear/changing requirements
 - Volatility of prices (oil, materials, labour rates...)
 - Inherent uncertainty in forecasts


Famous Costing Techniques

Expert opinion:

Cost Estimating Relationship

Parametric:

Analogy:

+ 2. Payloads

Estimating Acquisition Costs

+ 3. Related costs

- Construction
- Management

f(x)da

- Software
- Logistic support

= 4. Total costs

Estimating In-service Costs

- 1. Use operational profile
- 2. Use technical data from main engines and electrical plant
- 3. Calculate fuel consumption
- 4. Combine results with actual and forecasted fuel prices

Maintenance

Manning

- 1. Use/establish manning concept
- 2. Use/define operational concept
- 3. Identify salaries and additional payments
- 4. Apply bottom-up calculation

- 1. Collect data from existing ships
- 2. Use regression techniques to discover relationships
- 3. Use analogies to compare old/new systems
- 4. Extrapolate data

Misc

Cost Risk Analysis - Motivation

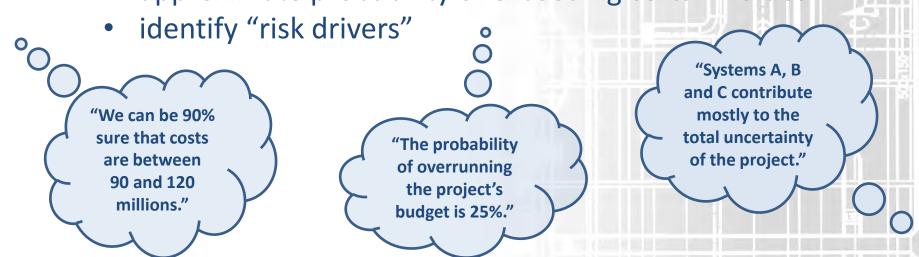
Cost estimates are:

- required in (very) early project stages
- based on multiple assumptions and data sources
- uncertain!

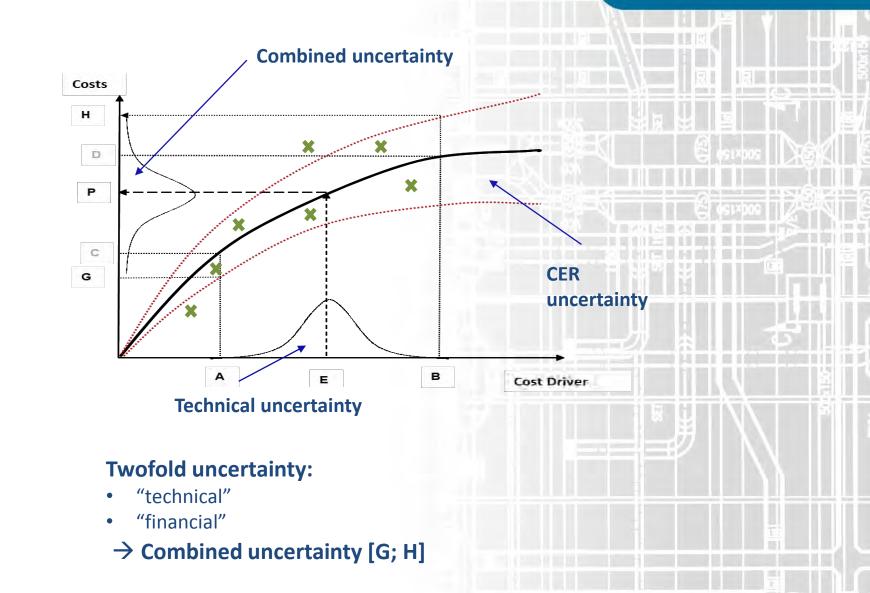
 \rightarrow Outcome of a cost estimation produces just one possible result.

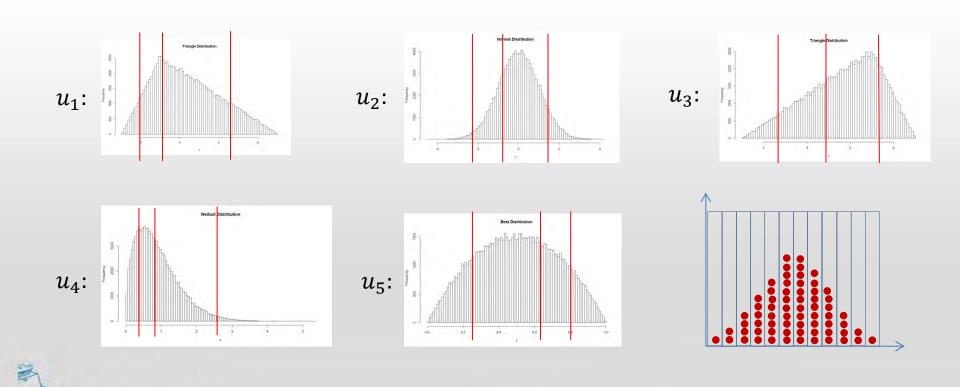
"Never try to walk across a river just because it has an average depth of four feet."

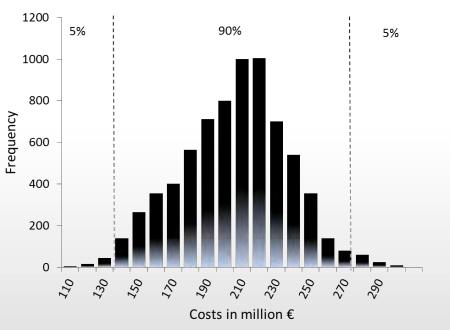
(Milton Friedman, American Economist/Statistician)

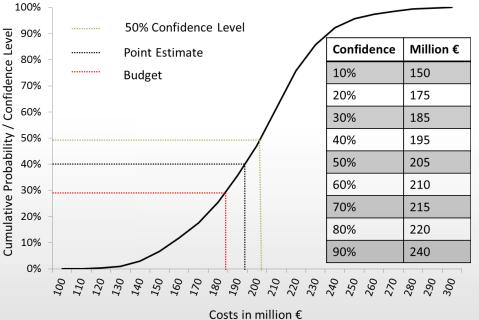

 \rightarrow Don't believe in mean values or point estimates.

Cost Risk Analysis - Goals


- Need for an instrument to quantify uncertainties → identify cost risks of the project
- Goals of Cost Risk Analysis are to:
 - estimate cost margins and confidence intervals
 - approximate probability of exceeding certain values


Modelling Uncertainty


Monte Carlo Simulation


- Stochastic simulation method relying on random experiments
- Statistical distributions in order to model uncertainty

Results of Cost Risk Analysis

- 90%-Interval
- Mean
- Median
- Standard deviation

- Percentiles
- Probability of exceeding point estimate / budget
- "Risk Dollars"

Summary

- Naval ships are highly complex and sophisticated systems
- It's a core issue to:
 - Identify requirements and
 - translate them to technical solutions
- Based on this it's another core issue to
 - Develop technical solutions in line with the budget
 - Identify cost risks as early as possible
- MTG has accepted this challenge
- MTG has proven to be a valuable partner for a wide range of customers

Country	Reference Design and services
Germany	 F122/F123/F124/F125/MKS180 T404/T702 (EGV) S143/S143A M332/M343 FD423; FS751 Planet (SWATH)
Colombia	 FS1500 (design, setting to work and acceptance testing, post delivery tests, building management) PES requirements generation PES initial conceptual design
Brazil	 Inhaúma (design, project planning, tender management and evaluation, design training)
Nigeria	 LST1300 (design and construction management) Acceptance of MEKO
Malaysia	 FS1500 (design and building management)
India	Engineering and maritime training courses
Greece	 Surveillance Street of Crete (Feasibility study underwater detection system (UWDS))
Australia	 Project management support services (ANZACS) Anti ship missile defense study Design standards and procedures
Oman	 Tender assessment, design assessment, contract negotiation Engineering assessment and modification design Surveillance System Street of Hormuz (Feasibility study)
Sweden	Sensor analysis and integration concept

Company	Reference Design and services	
Advanced Marine Enterprises Inc. Arlington, Va., USA	 Hull girder load predictions for frigate type ship 	
AMEC (Australian Marine Engineering Cooperation)	 Assessment of shipbuilding capability of Williamstown Naval Dockyard 	
Bird- Johnson Co. Inc., USA	Propeller shaft design	
DCNS, France	 Cost estimation for ship component optimization and evaluation 	
Hollandse Signaalapparaten B.V., Netherlands	 Investigating radar multiple path propagation 	
ISDEFE, Spain	Cost estimation for frigate programs	
Mc Mullen, USA	Whipping analysis of corvette type ship	
Mitas, Brazil	AAW effectiveness study	
Singapore Shipbuilding & Engineering Ltd., Singapore	 Landing craft, forward design Design FPB communication system 	
Boeing, Naval System Division, USA	 Design PHM, metrification, combat system, naval architecture and marine engineering Fleet effectiveness study 	
Verolme do Brazil, Brazil	 Naval dockyard planning, build strategy, proposal consulting, work planning and control 	

17/03/2015