

Estudio de la durabilidad de paneles balísticos en materiales compuestos usados en botes de combate fluvial en condiciones envejecidas por humedad y sujetas a fatiga por impacto

TN Nohora Alejandra Jiménez Abril PhD Juan Pablo Casas Rodríguez MSc David Ricardo Alvarado Carvajal A PICTURE IS WORTH A THOUSAND WORDS

AGENDA

01 INTRODUCCIÓN

Descripción de la problemática

02 ESTADO DEL ARTE

Estudios realizados al material **03** METODOLOGÍA

> Métodos y procedimientos para el desarrollo del proyecto

04 Materiales y Métodos

Fabricación de probetas y experimentación realizada **05** Resultados y análisis

En modo I y II de falla bajo condiciones cuasi-estáticas y de impactos de baja velocidad **06** CONCLUSIONES

Descripción de resultados

INTRODUCCIÓN

Encapsulado paneles balísticos (poliéster reforzado con fibra de vidrio y Gelcoat) [3]

Panel de blindaje delaminado [4]

ESTADO DEL ARTE Mecánica de la fractura lineal

Es aplicada para verificar la resistencia de un **cuerpo agrietado** y la predicción de la velocidad de **propagación de grietas**, a partir de la distribución **de esfuerzos y deformaciones** presentes en un material sólido

ESTADO DEL ARTE

	Efectos	en el UHMWPE	
Estudio	Material	Efecto	Resultados
Efecto de las condiciones de procesamiento en las propiedades (Cook, 2010)	SpectraShield 3124 (fibra UHMWPE-resina termoestable)	Variación de temperatura (-80∘C a 40∘C).	No encontró una diferencia perceptible en la resistencia a la tracción en las fibras unidireccionales de UHMWPE por cambios de temperatura durante el procesamiento, concluyendo que el daño se concentra en la matriz y no en la fibra.
Efectos sobre las propiedades de tracción (Zhang, 2003)	Fibras de polietileno de ultra alto peso molecular (UHMWPE)	Irradiación UV con luz solar A 300 horas	Las propiedades de tracción de las fibras de UHMWPE se degradaron . Las observaciones SEM indicaron que se encontró un cambio de un mecanismo de fractura dúctil a frágil después de la irradiación UV.
Estudio de la tenacidad a la fractura (Shanmugam, 2019)	Fibras unidireccionales de UHMWPE y resina Elium termoplástica	Reforzamiento superficial de polidopamina (PDA) y nanotubos de carbono (CNT)	La tenacidad a la fractura en Modo I aumentó , por una fuerte adhesión de fibra/matriz después del tratamiento superficial.
Estudio de la tenacidad a la fractura (Y. Zhaoa, 2018)	Híbrido Carbono(C) - Dyneema (D) C-C, D-D	Comportamiento de la delaminación	Mejoró la tenacidad a la fractura tanto en modo I como en modo II que se atribuyó a la fricción entre las superficies rugosas de delaminación.
Influencia de la degradación ambiental en el comportamiento mecánico (Vivas, 2013)	Dyneema HB2® y Spectra Shield SA-1211 (fibra UHMWPE-resina termoplástica)	Agua desionizada a 35 °C y 50°C , Solución salina a 35°C y Radiación UV	Se concluyó que los cambios más severos en el material fueron producto de la radiación UV a través de la escisión de cadena, en comparación con los resultados obtenidos por humedad y temperatura.

METODOLOGÍA

MATERIALES Y MÉTODOS

Fabricación de Probetas

PROPIEDADES MECÁNICAS					
Esfuerzo a la ruptura					
Deformación a la					
ruptura					
Módulo de elasticidad	(E)				
Esfuerzo cortante					
máximo					
Módulo Cortante					
PROPIEDADES FISICAS					
Densidad de área		257-271			
PROPIEDADES TÉRMICAS	3				
Temperatura de fusión		149.7 ºC			
Cristalinidad		88%			
Imagen 4	a. Carac	terización HB24T			

1"x 1/8"

Imagen 5 Ciclo de moldeo por compresión Dyneema BHT [4]

Dinámico

1"x 3/16"

Imagen 6 Especificaciones de las probetas en [mm] [5]

MATERIALES Y MÉTODOS Experimentación

Pruebas Cuasi-estáticas

INSTRON 3367

Celda de carga: 500N Velocidad: 1 mm/min

a. b. Imagen 7 Montaje condiciones cuasi-estáticas a. modo I b. modo II

Pruebas Dinámicas

Máquina de impactos de baja energía por caída de masa vertical (DWIT)

a.

Altura: 26mm Tiempo antirreobte: 90 ms

Imagen 8 Montaje condiciones dinámicas a. modo I b. modo II

Condiciones cuasi-estáticas Modo I

Imagen 9 Curva característica carga vs extensión a. sin envejecimiento b. 500 h c. 1000 h

Imagen 10 Tasa de liberación de energía Modo I a. sin envejecimiento b. 500 h c. 1000 h

Imagen 11 Propagación de grieta a 500 h y sin envejecimiento

Imagen 12 Propagación de grieta a 1000 h

Imagen 14 Tasa de liberación de energía Modo II cuasi-estático

Condiciones dinámicas Modo I

Imagen 16 Velocidad de propagación de grieta v
s $G_{Imáx}$ a. sin envejecimiento b. 500 h c. 1000 h

Imagen 17 Propagación de grieta a. sin envejecimiento b. 500h c.1000h

	% Cristalinidad	% Pureza		
Sin envejecimiento		0,98		
Temperatura (50°C) Humedad (80%) 500 h		0,91		
Temperatura (50°C) Humedad (80%) 1000 h		0,90		
Radiación UV		0,87		

	Resultados	cuasi-estáticos
--	------------	-----------------

unidades	Sin envejecimiento	Envejecidas a 500 horas	Envejecidas a 1000 horas	
	126,76 ± 9,28	116,06 ± 13,55	117,44 ± 10,04	
	126,76 ± 9,28	72,06 ± 7,73		

Imagen 19 Resultados tasa de liberación de energía en condiciones cuasi-estáticas

Resultados dinámicos					
		unidades	Sin envejecimiento	Envejecidas a 500 horas	Envejecidas a 1000 horas
				22,46 ± 9,82	
Imagen 20 Resultados tasa de liberación de energía en condiciones dinámicas					

CONCLUSIONES

- 1. No se reportan cambios significativos en la capacidad de absorción de energía en modo I de falla bajo condiciones cuasi-estáticas por temperatura y humedad a 500 y 1000 horas de envejecimiento, en contraste con los datos obtenidos por radiación UV.
- 2. El envejecimiento por acción de rayos **UV afecta drásticamente** al material en modo I de falla, y esta respuesta es consistente tanto en condiciones dinámicas como cuasi-estáticas.
- 3. Los laminados de fibras de polietileno de ultra alto peso molecular con resina de poliuretano cuando están sometidos a **cargas por impacto requieren menos energía** para propagar grieta en comparación a cuando son sometidos a condiciones cuasi-estáticas.
- 4. La energía necesaria para propagar grieta en **modo II es menor que en modo I** tanto en condiciones dinámicas como en condiciones cuasi-estáticas, relacionado con la degradación de la matriz debido a su envejecimiento.
- 5. La capacidad de absorción de energía **es menor a medida que aumenta el tiempo** de envejecimiento bajo las condiciones establecidas

REFERENCIAS

[1] T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, United States of America: Taylor and Francis: Third edition, 2005.

[2] Anónimo, «La Armada Colombiana incorpora dos de los ocho botes de Combate Fluvial de Bajo Calado previstos,» Infodefensa, 2021.

[3] COTECMAR, «Manual del usuario,» Cartagena, 2020.

[4] D. Brand, Recommended Pressure Cycle (metric), Holanda: Royal DSM NV, 2009.

[5] A. AC09036782, «Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites,» ASTM Internat., 2007.

[6] DSMBrand, "Flammability of Dayneema," 2007

[7] A. International, «Standard Test Method for Determination of the Mode II Interlaminar 56 Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,» doi: 10.1520/D7905_D7905M-19E01.

[8] A. G154-12a, Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of nonmetallic materials, American Society for Testing and Materials, West Conshohocken, PA, 2012.

[9] V. Vivas, Influência da degradação ambiental no comportamento mecânico e balístico de compósitos produzidos com fibra de polietileno de ultra alto peso molecular, Instituto Militar de Engenharia, 2013.

[10] F. P. Cook, Characterization of UHMWPE Laminates for High Strain Rate Applications, Virginia Tech, 2010.

[11] M. C. W. L. V. T. T. T. Y. Zhaoa, Interlaminar fracture toughness of hybrid woven carbon-Dyneema T composites, Shanghai: Donghua University, 2018.

[12] L. a. K. M. a. R. Z. a. L. D. a. W. X. a. W. B. a. Y. L. a. Y. J. Shanmugam, Enhanced mode I fracture toughness of UHMWPE fabric/thermoplastic laminates with combined surface treatments of polydopamine and functionalized carbon nanotubes, vol. 178, Elsevier, Ed., 2019, p. 107450.

[13] S. A. a. F. B. D. a. B. O. M. a. C. J. M. a. W. T. M. Maher, Effect of crosslinking, remelting, and aging on UHMWPE damage in a linear experimental wear model, vol. 25, W. O. Library, Ed., Journal of orthopaedic research, 2007, pp. 849-857.

GRACIAS