

DISEÑO CONCEPTUAL DE BUQUE PATRULLERO DE COSTA (CPV) CON CUBIERTA DE VUELO PARA LA RECEPECION Y DESPLIEGUE DE **HELICOPTERO**

AUTOR:

TFEIN GUERRERO SANCHEZ MIGUEL ANGEL

DIRECTOR:

ING, Msc. NAVAL EDGAR MARCELO CALI YAMBAY

Organizan:

AGENDA

- OBJETIVO DEL DISEÑO
- METODOLOGÍA DEL DISEÑO
- BUQUE REFERENCIA
- PERFIL DE MISIÓN
- DIMENSIONAMIENTO
- CÁLCULOS DE ARQUITECTURA
- ESTUDIO DE PESOS
- ESTABILIDAD INTACTA
- ESTIMACIÓN COMPORTAMIENTO EN EL MAR

OBJETIVO DEL DISEÑO

Vigilancia

• Incrementar la capacidad de exploración de los buques patrulleros de costa (CPV) de la Armada de Colombia

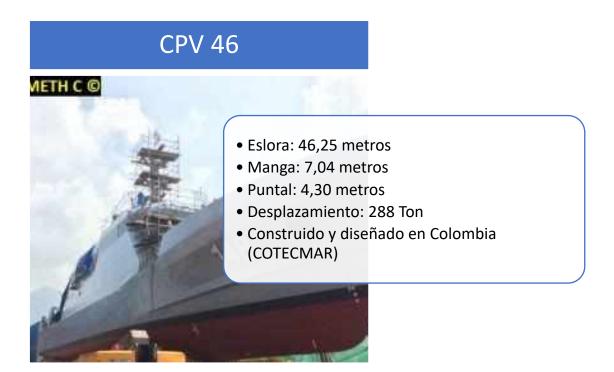
Tiempo de reacción

• Reducir tiempo de arribo de un helicóptero al área de operaciones en las costas colombianas.

Costos de operación

- El helicóptero pueda recibir combustible en el buque patrullero de costa, sosteniéndose en el área de operaciones.
- No requerir de unidades de mayor desplazamiento para aprovisionar al helicóptero en el área de operaciones.

METODOLOGÍA



BUQUE REFERENCIA

Fuente: Webinfomil.com

PERFIL DE MISIÓN

ZONA DE NAVEGACIÓN

- Navegación costera, hasta 12 MN desde la costa.
- En el Pacifico y el Caribe colombiano.

TIPOS DE MISIONES Y OPERACIONES

- Control de fronteras.
- Seguridad marítima.
- Búsqueda y rescate.
- Control y protección del medio ambiente.
- Operaciones de paz y ayuda humanitaria.

PERFIL OPERACIONAL (% DEL TIEMPO DE OPERACIÓN)

- Velocidad de 0 a 6 Knt: 20%
- Velocidad de 6 a 12 Knt: 70%
- Velocidad de 12 a 19 Knt: 10%

CAPACIDADES REQUERIDAS

ALCANCE:

2000 millas náuticas a 12 nudos.

AUTONOMÍA:

Víveres y agua para 23 personas por 17 días.

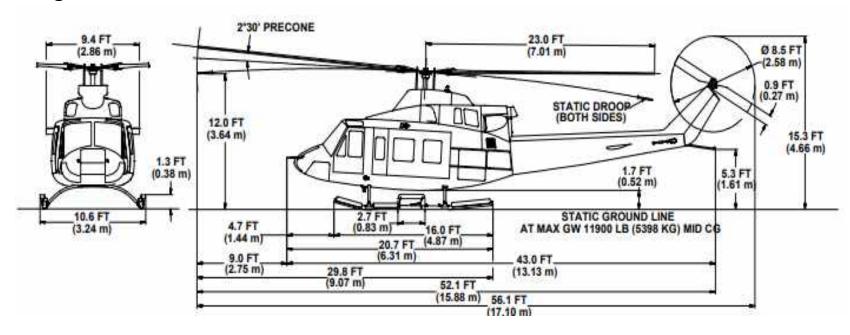
TRIPULACIÓN:

- > 03 oficiales
- > 15 suboficiales
- > 05 adicionales (URR o Helo)

CUBIERTA DE VUELO:

Recibir y desplegar un helicóptero BELL 412

DIMENSIONAMIENTO



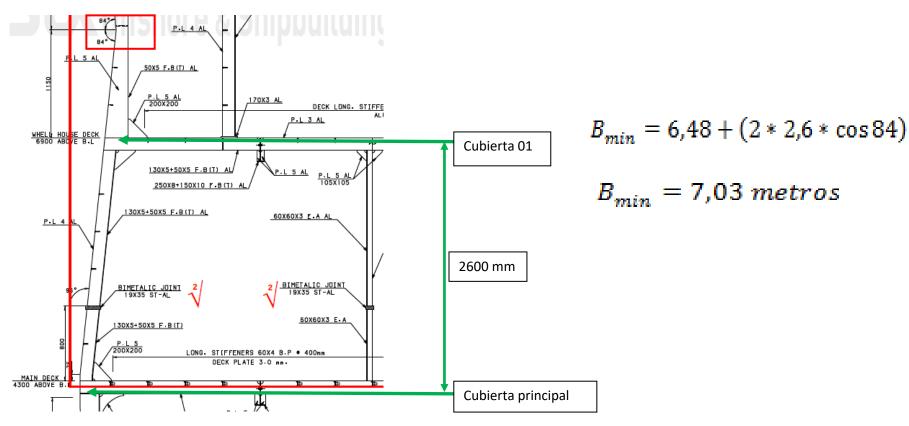
DIMENSIONES DE HELICOPTERO

Según los planos del helicóptero BELL 412 EP de la Textron Company, se requiere una plataforma de cubierta de vuelo con mínimo 6,48 m de ancho y 17,53 m de largo.

Fuente: Textron Company, Bell 412 EP product specifications

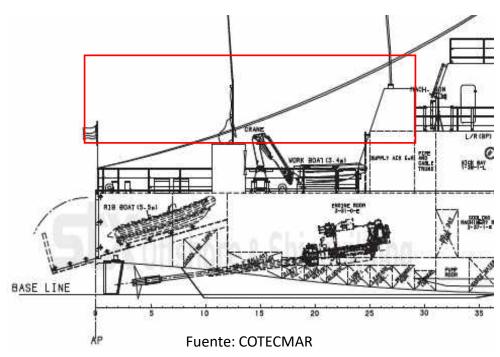
BUQUE REFERENCIA

Fuente: COTECMAR



RESTRICCIONES DEL DISEÑO

Fuente: COTECMAR



DIMENSIONAMIENTO

Longitudinalmente se establece que desde la cuaderna 0 a la 30 se posicionaría la plataforma de la cubierta de vuelo.

Para poder cumplir con la longitud de 17,53 m se adicionan 3 metros de longitud a la CPV-46, dejando una eslora de 49 metros.

DIMENSIONES PRINCIPALES

A partir del diseño CPV-46, se extrapoló y ajusto las dimensiones y características para la CPV con capacidad de recibir un helicóptero.

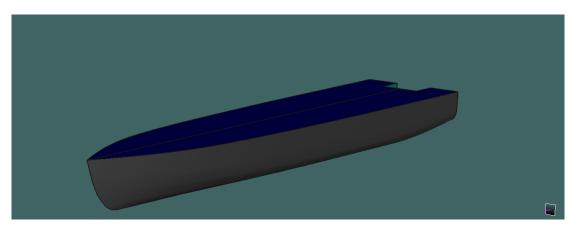
	CPV-46	CPV-49
LOA (m)	46.25	49.00
B (m)	7.03	8
T (m)	4.30	4.56
Peso en rosca sin plataforma (ton)	263	336.26
NC	1398	1787
Ton/m3	0.188	0.188

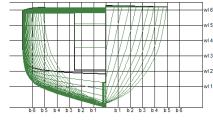
Fuente: COTECMAR

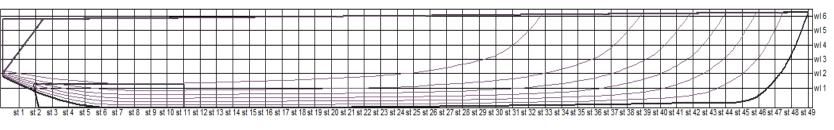
ARQUITECTURA NAVAL

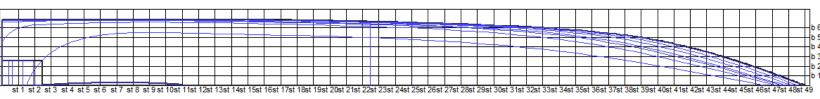
ESTIMACIÓN DEL DESPLAZAMIENTO

Descripción	Peso (Ton)
Peso ligero por aumento de dimensiones	336.26
Peso plataforma y sistema de asistencia al helicóptero	5.00
Peso ligero o peso en rosca	341.26
Peso muerto CPV-46	63.00
Helicóptero BELL 412 EP	5.4
Sistemas apoyo al helicóptero	5.00
Peso muerto CPV-49	73.40
Desplazamiento	414.66






LÍNEAS DE FORMA

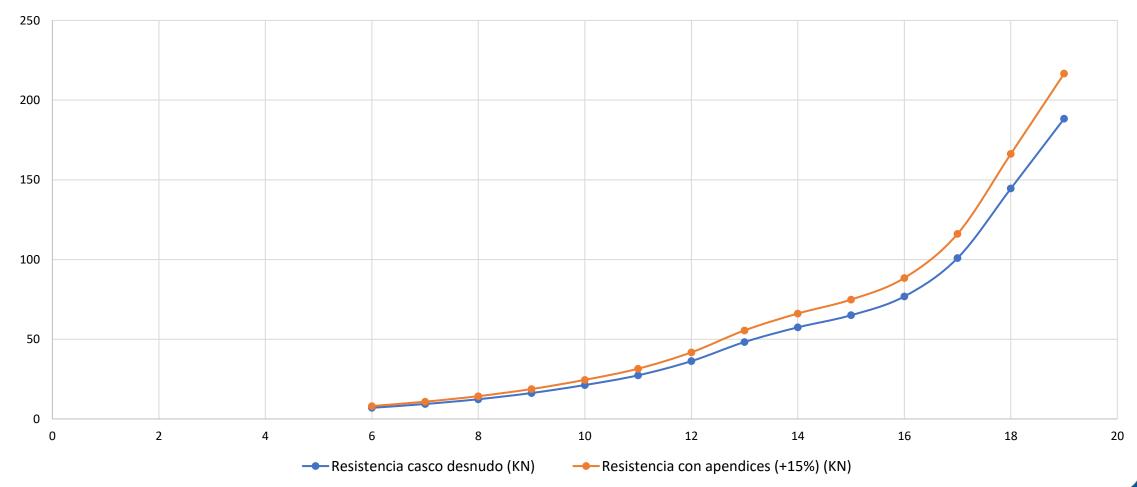

ISOMÉTRICO

VISTA SUPERIOR

RESISTENCIA AL AVANCE

Series sistemáticas: Método de Holtrop (cascos de desplazamiento) para la predicción de la curva de potencia:

	Mínimo	Máximo	Diseño CPV 49
Fn	0,00	0,85	0,465
Ср	0,55	0,85	0,723
LWL/B	3,90	9,50	6,353



RESISTENCIA AL AVANCE

GRÁFICA RESISTENCIA AL AVANCE VS VELOCIDAD

PREDICCIÓN DE POTENCIA

GRÁFICA POTENCIA VS VELOCIDAD

ESCANTILLONADO

"Rules and Regulation for the Classification of Naval Ship" de enero de 2018 de la casa clasificadora Lloyd's Register.

Este diseño entra en la clasificación de buque tipo NS3.

buques con desplazamiento inferior a 1500 toneladas y con roles de primera línea que pueden operar de forma individual o en un grupo de operaciones, correspondiente a buques para barrido de minas, desembarque en playas, defensa costera o patrullera rápida.

Materiales:

Ubicación	Material	R fluencia (MPa)	R ultimo (MPa)	Modulo Elasticidad (MPa)
Casco	Acero ASTM AH32	315	414	200000
Superestructura	Aluminio A 5083	125	275	69000

ESCANTILLONADO

Dr	Espesor Mínimo de Lamina						
ltem	Formulación	Valor					
Lamina de fondo y de sentina	$\sqrt{K_{ms}} * \left(\left(0.4 * \sqrt{L_R} \right) + 2 \right)$	6,23					
Lamina de costa	$\sqrt{K_{ms}} * \left(\left(0.38 * \sqrt{L_R} \right) + 2 \right)$	5,93					
Espesor de cubierta	$\omega * \sqrt{K_{ms}} * ((0.38 * L_R) + 1.2)$	6,18					
Mamparo estanco	$\omega * \sqrt{K_{ms}} * \left(\left(0.33 * \sqrt{L_R} \right) + 1.0 \right)$	6,16					
Mamparo de tanques	$\omega * \sqrt{K_{ms}} * \left(\left(0.38 * \sqrt{L_R} \right) + 1.2 \right)$	6,18					
K_{ms}	$^{635}/_{(\sigma_0 * \sigma_u)}$	4,86926 * 10 ⁻³					

Tipo de buque	ω
Estructura de fondo de buques de operación de encallado	1,2
NS1	1,1
NS2 Y NS3	1

$$z = \frac{\varphi_z * ps * l_e^2}{f_\sigma * \sigma_0} cm^3$$

$$I = \frac{100 * \varphi_I * ps * l_g^3}{f_{\delta} * E} cm^4$$

Estructurales secundarios

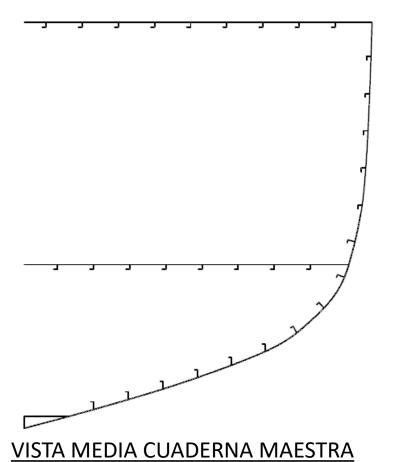
$$A_{w} = \frac{\varphi_{A} * ps * l_{e}}{100 * f_{\tau} * \tau_{0}} cm^{2}$$

$$z = \frac{10^3 * \varphi_z * ps * l_e^2}{f_\sigma * \sigma_0} cm^3$$

Estructurales primarios

$$I = \frac{10^5 * \varphi_I * ps * l_e^3}{f_{\delta} * E} cm^4$$

$$A_w = \frac{10 * \varphi_A * ps * l_e}{f_\tau * \tau_0} cm^2$$


DIMENSIONES

CUADERNA MAESTRA

ELEMENTO ESTRUCTURAL

Lamina de fondo	Espesor 3/8" o 9,525 mm
Lamina de pantoque	Espesor 3/8" o 9,525 mm
Lamina de costado	Espesor 1/4" o 6,35 mm
Lamina de cubierta 2	Espesor 1/4" o 6,35 mm
Lamina de Cubierta principal	Espesor 1/4" o 6,35 mm
Alma refuerzo quilla	Espesor 3/8" o 9,525 mm
Ala refuerzo quilla	Espesor 3/8" o 9,525 mm
Refuerzo longitudinal de fondo	Angulo 80x40x8
Refuerzo longitudinal de pantoque	Angulo 80x40x8
Refuerzo longitudinal de costado	Angulo 50x50x8
Refuerzo longitudinal de cubierta No2	Angulo 50x50x8
Refuerzo longitudinal de cubierta principal	Angulo 50x50x8

MODULO DE SECCIÓN DE CUADERNA	MODULO DE SECCIÓN MÍNIMO
MAESTRE	REQUERIDO
$0,2858 m^3$	$0,1161 m^3$

Momento flector máximo:

$$M_{max} = 90027 \, KN * m$$

Momento flector aguas calmas:

$$M_{SW} = 11424,76 \, KN * m$$

Momento flector en olas

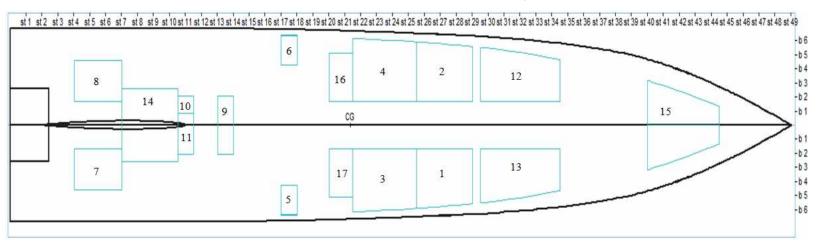
Quebranto	Arrufo
$M_{WV(+)} = 0.19 * M * C * L_{WL}^{2} * B * C_{B}$	$M_{wv(-)} = 0.11 * M * C * L_{WL}^{2} * B * C_{B}$
$M_{wv(+)} = 12023,95 \text{KN} * m$	$M_{wv(-)} = 6961,234 KN * m$
$M_{total} = 599,19 \ KN * m$	$M_{total} = 18385,994 \ KN * m$

M=1 Distribución de la eslora, buque con la cuaderna maestra entre 0,4 L< X<0,65L

ESTIMACIÓN DE PESO LIGERO

						Loa [m]	B [m]	h [m]	CN
	CPV-46						7,03	4,3	1398,091 3
SWBS	Description	Weigh t	x [m]	у [m]	z [m]	x [%Loa]	y [% B]	Z [%h]	Ton/m3
100	Hull Structure	105,6 3	20,9 5	0,02	2,45	45%	0%	57%	0,0756
100	Superstructure	12,59	22,9 7	- 0,01	7,36	50%	0%	171%	0,0090
200	PROPULSION	31,42	9,40	- 0,05	1,72	20%	-1%	40%	0,0225
300	ELECTRICAL PLANT	16,40	19,7 4	- 0,22	4,01	43%	-3%	93%	0,0117
400	COMMAND AND SURVEILLANCE	4,87	24,8 1	0,60	8,14	54%	9%	189%	0,0035
500	AUXILIARY SYSTEMS	32,46	13,7 2	0,14	3,31	30%	2%	77%	0,0232
600	OUTFIT AND FURNISHINGS+FIFI+RIB	48,52	22,9 4	0,13	4,71	50%	2%	110%	0,0347
700	ARMAMENT+ misil	11,12	19,1 0	0,42	5,80	41%	6%	135%	0,0080
		263							

					Loa	В	h	CN	
CPV-49						8,00	4,56	1787,52	
SWBS	Description	Weight	x [%Loa]	Z [%h]	x [m]	y [m]	z [m]	Mx	Mz
	Hull Structure	135,06	48%	57%	23,7	0,0	2,6	3195,73	350,64
100	Superstructure	16,09	56%	171%	27,3	0,0	7,8	438,84	125,59
	Flight deck	5,00			9,0	0,0	7,2	45,00	35,80
200	PROPULSION	40,17	20%	40%	10,0	-0,1	1,8	400,24	73,30
300	ELECTRICAL PLANT	20,97	49%	93%	23,9	-0,2	4,3	500,29	89,19
400	COMMAND AND SURVEILLANCE	4,87	60%	189%	29,2	0,7	8,6	142,28	42,03
500	AUXILIARY SYSTEMS	32,46	30%	77%	14,5	0,2	3,5	471,84	113,91
550	AUX HELO	1,00	39%	170%	19,1	0,2	7,8	19,11	7,75
600	OUTFIT AND FURNISHINGS+FIF I+RIB	62,03	53%	110%	25,8	0,2	5,0	1598,46	309,92
700	ARMAMENT+ misil	11,12	41%	135%	20,2	0,5	6,2	225,03	68,44
	Lead (Plomo)	2,56			19,0		0,0	48,64	0,00
	Total	331,32			21,4		3,7	7085,46	1216,57
	Margin 3%	9,94							
	Light weight	341,26							



DISTRIBUCIÓN DE TANQUES

	DISTRIBUCION DE	TANO	QUES
1	Combustible Diesel #1 (e)	9	Aceite Lubricante
2	Combustible Diesel #2 (b)	10	Aceite Hidráulico
3	Combustible Diesel #3 (e)	11	Aceite residual
4	Combustible Diesel #4 (b)	12	Agua Potable 2 (b)
5	TSD #1 (e)	13	Agua Potable 1 (e)
6	TSD #2 (b)	14	Lastre Proa
7	Combustible Helicóptero	15	Lastre Popa
8	Gasolina para URR	16	aguas grises
		17	aguas residuales

TANQUES	CAP. MINIMA (m^3)	CAP. DISEÑO (m^3)
Combustible	33,78	34,138
Agua	13,8	14,856
Aceite	1,79	2,029

ESTUDIO DE PESO MUERTO

Item Name	Quantity	Unit Mass (tonne)	Total Mass (tonne)	Unit Volume (m^3)	Total Volume (m^3)
Helicóptero BELL 412 EP	100%	5,4	5,4		
Tripulación	100%	1,8	1,8		
Víveres	100%	3	3		
Carga	100%	2,988	2,988		
Combustible Diesel #1	95%	5,664	5,381	6,743	6,406
Combustible Diesel #2	95%	5,664	5,381	6,743	6,406
Combustible Diesel #3	95%	7,207	6,846	8,579	8,15
Combustible Diesel #4	95%	7,207	6,846	8,579	8,15
TSD #1 (e)	95%	1,468	1,394	1,747	1,66
TSD #2 (b)	95%	1,468	1,394	1,747	1,66
Diesel Total		28,678	27,242	34,138	32,432
Gasolina para URR	95%	5,354	5,087	7,14	6,783
Combustible Helo	95%	5,354	5,087	7,14	6,783
Aceite Lubricante	95%	1,867	1,774	2,029	1,928
Aceite Hidráulico	95%	0,495	0,47	0,538	0,511
Aceite residual	95%	1,222	1,16	1,338	1,271
Agua Potable 1	95%	7,428	7,057	7,428	7,057
Agua Potable 2	95%	7,428	7,057	7,428	7,057
Agua Potable total		14,856	14,114	14,856	14,114
Lastre Proa	0%	11,808	0	11,52	0
Lastre Popa	0%	8,145	0	7,946	0
aguas residuales	95%	2,778	2,639	3,043	2,89
aguas grises	95%	2,778	2,639	3,043	2,89
Total Loadcase		96,523	73,4	92,731	69,602

ESTABILIDAD INTACTA

Se evaluó la estabilidad transversal según los criterios de la International Maritime Organitation (IMO), estipulados en el capítulo tercero de la resolución A 749 "Código de estabilidad intacta sin avería", los cuales aplican para buques mayores de 24 metros de eslora:

PESO EN ROSCA

Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 -	2.2.1: Area 0 to 30	3,1513	m.deg	5,7676	Pass	+83,02
General Criteria						
267(85) Ch2 -	2.2.1: Area 0 to 40	5,1566	m.deg	8,4149	Pass	+63,19
General Criteria						
267(85) Ch2 -	2.2.1: Area 30 to 40	1,7189	m.deg	2,6474	Pass	+54,01
General Criteria						
267(85) Ch2 -	2.2.2: Max GZ at 30 or greater	0,200	m	0,298	Pass	+49,00
General Criteria						
267(85) Ch2 -	2.2.3: Angle of maximum GZ	25,0	deg	30,0	Pass	+20,00
General Criteria						
267(85) Ch2 -	2.2.4: Initial GMt	0,150	m	1,164	Pass	+676,00
General Criteria						

ESTABILIDAD INTACTA

MEDIA CARGA

Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3,1513	m.deg	6,4008	Pass	+103,11
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5,1566	m.deg	9,6472	Pass	+87,08
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1,7189	m.deg	3,2465	Pass	+88,87
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0,200	m	0,354	Pass	+77,00
267(85) Ch2 - General Criteria	2.2.3: Angle of maximum GZ	25,0	deg	30,0	Pass	+20,00
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0,150	m	1,162	Pass	+674,67

MÁXIMO DESPLAZAMIENTO

Code	Criteria	Value	Units	Actual	Status	Margin %
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 30	3,1513	m.deg	6,5325	Pass	+107,29
267(85) Ch2 - General Criteria	2.2.1: Area 0 to 40	5,1566	m.deg	9,9849	Pass	+93,63
267(85) Ch2 - General Criteria	2.2.1: Area 30 to 40	1,7189	m.deg	3,4525	Pass	+100,85
267(85) Ch2 - General Criteria	2.2.2: Max GZ at 30 or greater	0,200	m	0,378	Pass	+89,00
267(85) Ch2 - General Criteria	2.2.3: Angle of maximum GZ	25,0	deg	30,0	Pass	+20,00
267(85) Ch2 - General Criteria	2.2.4: Initial GMt	0,150	m	1,097	Pass	+631,33

ESTIMACIÓN COMPORTAMIENTO EN EL MAR

Método numérico: Teoría de fajas

Condición de diseño

Estado del mar (Caribe)	Altura de la ola (m)	Periodo modal (s)	Vel (nudos)	Entrada de la Ola (°)
4	1,7	6,515	19	180
5	2,6	9,062	19	180

RMS	Buques militares	RMS MAR 4 / MAR 5	AMPL SIGN	
Aceleración vertical (m/s^2)	2,695	0,956 / 1,324	1,912 / 2,648	
Aceleración vertical puente (m/s^2)	1,96	1,488 / 2,009	2,975 / 4,018	
Velocidad vertical cubierta de vuelo (m/s)	2,97 / 3,35	1,222 / 1,046	2,444 / 1,660	

CONCLUSIONES

 Se dimensiono una embarcación patrullera de costas con capacidad de recibir, abastecer y desplegar un helicóptero BELL 412, de acuerdo a las necesidades de la Armada Nacional.

Se estimaron las características y capacidades principales:

Eslora: 49 metros

Manga: 8 metros

Puntal: 4,56 metros

Desplazamiento: 414,66 ton

Velocidad: 19 nudos

Potencia efectiva: 2433,3 KW Potencia de freno: 4506,1 KW

• Se calculó para la primera aproximación, la estabilidad y comportamiento en el mar para la CPV 49, los cuales están dentro de los parámetros de cumplimiento recomendados.

