

200

93 -----

1

I YI

Organizan

ESCUELA NAVAL ALMIRANTE PADILLA

Ä

Pas (BEV DES)

INSTITUTO PANAMERICANO DE INGENIERIA NAVAL

Implementation of Hydrodynamic protuberances in the design of stabilizing blades in a human-powered submarine.

Bryant E. Castañeda, <u>bryantedmir@outlook.com</u> Jorge Romero, <u>jorge_romero97@outlook.com</u> Mariana Silva-Ortega, <u>marsilva@uv.mx</u> Aldo Barradas, <u>albadi994@hotmail.com</u> Mariano A. Hernández, <u>marianohernandez@uv.mx</u>

UNIVERSIDAD VERACRUZANA

- Introduction
- Problem Description
- Submarine Description
- Methodology
- Geometry of the tubercles
- Stabilizing blades
- Propeller
- Numerical Simulation
- Boundary conditions
- Mesh
- Results
- Future works

Introduction

- The study about sea species has been permitted the development of devices with better performance for the characteristics of this animals.
- Hydrodynamic characteristics of the Humpback whale specifically the
- Implementations (Hassen et all, 2009: H Ibrahim, 2015)

Figure 1 – Humpback Whale acrobatic jump. Image from Pacific Whale Foundation.

The humpback whale

• Humpback whales utilize extremely mobile, winglike flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature.

Submarine's description

• The submarine "Arcangello" is a design generated based on the shape of the tuna fish. The hull has a length of 3 meters, a beam of 65 cm and a depth of 70 cm. Manufactured with fiberglass and aluminum reinforcements, it weighs approximately 60 kilograms.

Problem Description

- International Submarine Races (ISR)
- David Taylor Model Basin of the Carderock Division of the Naval Surface Warfer Center in Bethesta, M.
- Arcangello Sumbarine

- Enhance de current design which raced in the last competition (2017) for the next.
- Finding out all advantages for being faster design.
- Employ a humpback's whale fin geometry in the stabilizer fins and propeller

Methodology

Geometry of the tubercles

In previous studies were determined and used measures of amplitude and wavelength: Bolzon et al. (2014). Shi et al. (2016). Ibrahim & New (2015).

With these values we determine the following profiles using the same length (. 86 m) and profile ratio:

A0L0: Amplitude 0% of the chord and wavelength of 0% of the ratio of the profile. A5L17: Amplitude 5% of the chord and wavelength of 17% of the ratio of the profile. A7L17: Amplitude 7% of the chord and wavelength of 17% of the ratio of the profile

Note: the term chord is referred for stabilizer fins, length over all the fin

Stabilizing blades

- Analysing all the transversal sections, it has a lot of irregularities so we decided to use the maximum wide section, as a result the stabilizer fins have a mean wide of 0.215 m.
- For length we will use the third part of the submarine body (2.6 m without the propeller) as a result we are going to have a fin length of 0.86 m
- The mid span section of humpback's whale pectoral fin is very similar to NACA 63(4)-221 air foil design

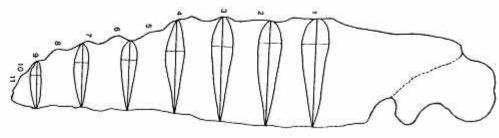


Figure 2 – Model of the stabilizer fins: AOLO

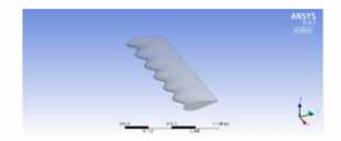


Figure 3 – Model of the stabilizer fins: A5L17

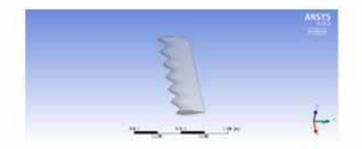


Figure 4 – Model of the stabilizer fins: A7L17

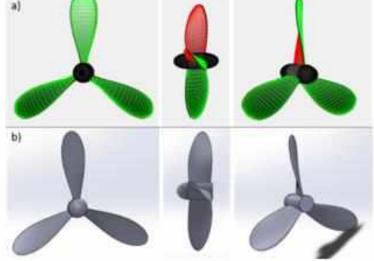
Modelling propellers

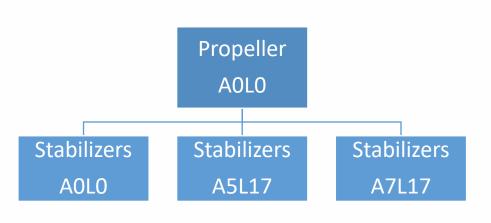
- The propeller design
- Open Prop
- Open Prop can make a geometry only using parameter in their data menu, those parameters are:

Specifications	Value	Unit		
Number of blades	3			
Angular velocity	195	RPM		
Propeller Diameter	0.65	m		
Thrust Required	736	N		
Submarine Velocity	3.5	m/s		
Propeller Hub	0.08	m		
Fluid Density	999.19	Kg/m ³		

Propeller Performance				
Advance Ratio	1.65			
Torque	178.3	Nm		
Power	3642	Watts		

- Modifications to the original output in SOLID WORKS
- Two more geometries were made, with the implementation of the protuberances in the submarine's propeller with the same amplitude and wavelength ratios, A5L17 and A7L17.
- In the study the propeller AOLO was determined to generate less resistance force.




Figure 5– AOLO propeller views. a) Output data in Open pro, b) Models in Solid Works[®].

Numerical Simulation

 The comparison of the thrust coefficient, torque coefficient and efficiency will be made with the same advance ratio, using the following initial data and formulas:

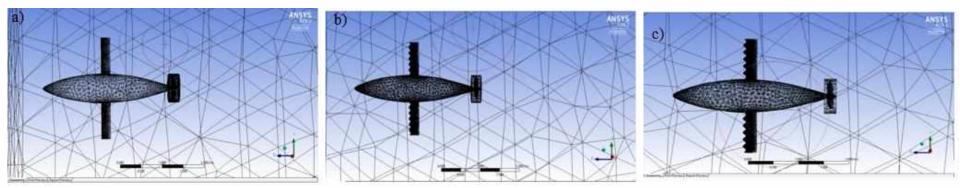
Analysis

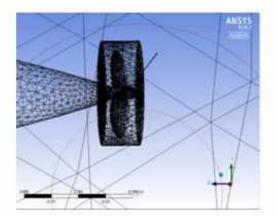
• To determine the magnitudes of the drag force and torque, an analysis was made in CFD (Computational fluid dynamics), specifically the software ANSYS[®] 19.2 academic version.

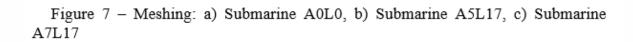
Boundary Conditions

• For the different models an analysis was carried out using the same initial conditions; defining a cylindrical control region where the submarine is located.

Specifications	Value	Unit		
Number of blades	3			
Angular velocity	195	RPM		
Propeller Diameter	0.65	m		
Thrust Required	736	N		
Submarine Velocity	3.5	m/s		
Propeller Hub	0.08	m		
Fluid Density	999.19	Kg/m ³		


Meshing


- For meshing it was decided to use by default, the student version of ANSYS[®] having some operating limits, among them the number of nodes (520000), a fine or modified meshing exceeded the limit allowed by the license used.
- Mesh for model: A0L0



Blade model	Number of	Number of		
with	nodes	elements		
propeller				
A0L0	71735	389703		
A5L17	86585	468245		
A7L17	93090	502850		

 Once the meshing is done, the input data is configured, the flow of water that passes around the submarine enters at a velocity of 3.5 meters per second, and as it is a dynamic analysis, the rotation velocity of the propeller is 195 RPM.

• The results of the simulation are the drag forces and the torque and when included in the formulas outlined above are obtained:

Model	Zone	Force	Torque	Kt	Kq	μ
AOLO	Propeller	1065.51	490.43	.565	.260	.57
A5L17	Propeller	1081.13	510.04	.58	.270	.572
A7L17	Propeller	1163.54	512.31	.617	.271	.59

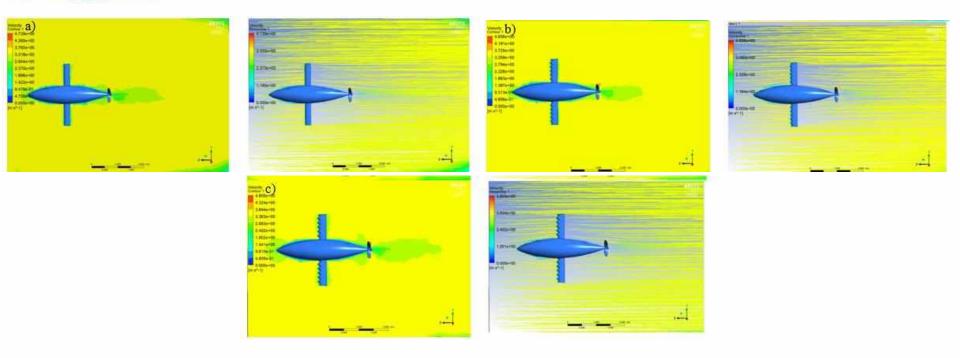


Figure 8 – Results with Contour and Streamline a) Submarine A0L0, b) Submarine A5L17, c) Submarine A7L17

Gracias por su atención Obrigado Thanks

