

Analysis of a Bow Thruster using a RANS Method

Barbara Blum

Technical University Berlin

Research Project querAlFa

Motivation:

Bow thrusters widely used for manoeuvres at zero or very slow speeds Broader range of application requested

The Problem:

Loss of efficiency already at moderate forward speed Normally disregarded in design process

The Goal:

Integrate application scenarios in design process

The Contribution of TUB:

Manoeuvring simulation with bow thruster

Extensive full scale experiments for Validation

Approach

The Dummy for Experiments:

Full scale

75kW

Width: 2.3m

Thruster: 1029 rpm

Built by Fassmer GmbH

Search and Rescue Vessel

L_{pp}: 27.9m

The Ship:

Approach

Launch of experiments in November 2018 Towing tank of TU Berlin: 250m x 8m x 4.8m Max. speed of carriage 5m/s

Preliminary Study

RANS code Neptuno Steady state No free surface W/o propeller Edge radius 75mm

Preliminary Study

RANS code Neptuno Steady state No free surface W/o propeller Edge radius 15mm

Concept of the Body Force Model

Simulation of the Bow Thruster

Neptuno 4.1 Mio. cells Steady state Tunnel only Pressure at In- and Outlet

Validation of the Body Force Model

Neptuno Sliding grids 3.8 mio. cells *Potsdam Propeller Testcase* **Open water condition** Straight inflow

Simulations with StarCCM+ by David Fuentes

Motivation:

Fast simulation of rudder manoeuvres in waves

Approach:

Coefficient based approach (Abkowitz model)

Extended by influence of waves

Prediciton of propeller torque

Literature: Uharek, S. and Cura Hochbaum, A., Power Prediction for Safe Manoeuvring in Waves, Proceedings of the 32nd ONR Symposium on Naval Hydrodynamics, 2018.

Procedure for Manoeuvring Prediction in 4 DoF

$$\begin{split} m \left[\dot{u} - \dot{\psi}v - x_{\rm G}\dot{\psi}^2 + z_{\rm G} \left(2\dot{\psi}\dot{\varphi}\cos\varphi + \ddot{\psi}\sin\varphi \right) \right] &= X_c + X_w \\ m \left[\dot{v} + \dot{\psi}u + x_{\rm G}\ddot{\psi} + z_{\rm G} \left(\left(\dot{\psi}^2 + \dot{\varphi}^2 \right)\sin\varphi - \ddot{\varphi}\cos\varphi \right) \right] &= Y_c + Y_w \\ I_{xx}\ddot{\varphi} - I_{xz}\ddot{\psi}\cos\varphi + \left(I_{zz} - I_{yy} \right)\dot{\psi}^2\sin\varphi\cos\varphi + \\ &-mz_{\rm G}\cos\varphi \left(\dot{v} + u\dot{\psi} \right) = K_c + K_w \\ \left(I_{yy}\sin^2\varphi + I_{zz}\cos^2\varphi \right)\ddot{\psi} + \\ 2\left(I_{yy} - I_{zz} \right)\dot{\psi}\dot{\varphi}\sin\varphi\cos\varphi - I_{xz} \left(\ddot{\varphi}\cos\varphi - \dot{\varphi}^2\sin\varphi \right) + \\ &-mx_{\rm G} \left(\dot{v} + u\dot{\psi} \right) + mz_{\rm G}\sin\varphi \left(\dot{u} - v\dot{\psi} \right) = N_c + N_w \end{split}$$

Determination of calm water coefficients

(3) Fit computed forces

1	X '0	0.000	Y'0	0.044	<i>K</i> ['] 0	0.001	N'o	-0.022
2	X's	0.038	Ϋ́δ	2.903	K΄δ	-0.040	N's	-1.305
3	X' 55	-1.504	Y'55	-0.004	K'ss	0.002	N'so	0.007
4	X' 555	-0.011	Υ΄ δδδ	-3.067	Κ' δδδ	0.046	N' 555	1.283
5	X'u	-2.585	Y'u		K'u		N'u	
6	X'uu	1.321	Y'uu		K'uu		N'uu	
7	X'uuu	0.000	Y'uau		K'uuu		N'uau	
8	X'u	-0.400	Y'u		K'u		N'u	
9	X'v	-0.010	Y'_{ν}	-12.776	K'v	0.373	N'v	-3.497
10	X'w	0.070	Y'_vv	0.215	K'_vv	-0.012	N'vv	-0.087
11	X'	0.046	Y'	-40.493	K'vvv	1.393	N'vvv	-5.964
12	X'v		Y'v	-5.759	K'v	-0.028	N'v	0.219
13	X'r	0.014	Y'r	1.603	K'r	0.006	N'r	-1.780
14	X'm	0.043	Y'rr	0.129	K'm	-0.003	N'm	-0.058
15	X'mr	-0.011	Y'm	-1.155	K'rrr	-0.060	N'rrr	-1.616
16	X'r		Y'r	-0.399	K'r	0.019	N'r	-0.231
17	X'vr	4.289	Y'vr	0.000	K'vr	0.000	N'vr	0.000
18	X'um		Y'	-13.498	K',,,,,,,	0.496	N'um	-2.957

Application case

S175 benchmark ship

Extensively tested by Yasukawa and Nakayama (2009) Computations performed with Neptuno

Numerical grids with and without free surface

1.8 and 1.1 million cells

	full scale	model scale			
L _{pp}	175 m	3.5 m			
B_{wl}	24.5 m	0.508 m			
Т	9.5 m	0.19 m			
\forall	24172 m ³	0.1934 m ³			
X _G	-2.545 m	-0.051 m			
k_{yy}/L_{pp}	0.269				
C _B		0.572			
U	12.1 kn	0.879 m/s			
GM	1 m	0.02 m			
Fn	0.15				
Re	1.1 10 ⁹	3.1 10 ⁶			

Turning circle test in calm water

Turning circle test Approach speed 12 kn 35° rudder deflection

Good agreement with EXP

25% power increase for 90°30% power increase for 180°

Turning circle test in head waves with $\lambda' = 1.0$

Passive course keeping stability

Sum of wave, rudder and drift force can be zero

- \rightarrow Equilibrium situations exist
- Some situations are found to be stable
- Allow for passive (mean) course keeping

Validation by direct RANS course keeping test

Literature: Cura Hochbaum A. and Uharek S., On the Heading Stability of a Ship in Waves, Ship Technology Research, to appear 2019

Passive course keeping stability

Thank you for your attention!

