

33 m

Analysis of the performance of FLNG vessels according to basic design parameters

Organizan:

Daniel P. Vieira – USP

Kam Yu Kang – USP

Claudio M. P. Sampaio - USP

- Introduction
- Offshore Exploration
- Challenges
- Syntheis Model
- Numerical Model
- Analysis
- Results
- Conclusion

Introduction

Source: <u>https://www.clickittefaq.com/wp-content/uploads/2017/07/LNG-Combined-Cycle-Power-Plant.jpg</u>

https://www.igu.org/natural-gas-fuels-innovation-home

http://www.oilandgas360.com/wp-content/uploads/2016/09/nat-gas-fertilizer.jpg?x38408

https://www.carbonbrief.org/whats-the-difference-between-natural-gas-liquid-natural-gas-shale-gas-shale-oil-and-methane-an-oil-and-gas-glossary http://worldartsme.com/natural-gas-industry-clipart.html#gal_post_95924_natural-gas-industry-clipart-1.jpg

• Use of a specialized floating unit for deep water exploration : FLNG

Source:https://www.oilandgasiq.com/fpso-flng/articles/guide-to-flng

Challenges

Vessel Requirement

High Load Capacity

- Structural Analysis
- Platform arrangement
 Structural mass
 Costs

• The influence of mooring lines, connections lines and fenders;

- Hydrodynamic of the free surface in the gap (resonance) between the vessels
- Sloshing

Source: http://www.energyglobalnews.com/schlumberger-drops-fortuna-fing-project/

Synthesis Model

Definition:

- Gas Capacity
- Installation Area
- Water Depth
- Environmental Conditions
- Equipment operation conditions

- Midship section
- Lightweight hull hull center of gravity
- Inertia
- Definiton of maximum loads and accelerations

Synthesis Mode Notes Naval

Production Requirements

- Storage Volume
- Load Mass considering LNG and LPG volumes and densities
- Available Deck
- Structural Routine
- Stability Routine

Particulars

- FLNG's dimensions
- Parameters of Study
- Double Side
- Double Bottom
- Double Deck

INGENIERÍA NAVAL, TRANSPORT

- WAMIT (Newman, 1995)
- Mesh of the wet surface of the vessel,
- Information about mass and inertia,
- A vector of periods (or frequencies) of the waves, and
- A vector of wave incidences.

Numerical Model Naval

FLNG's Particulars

- •LOA Length Overall
- •B Beam
- D Depth
- Hpo Height of stern chamfer
- Hpr Height of bow chamfer
- Lpo Length of the stern chamfer
- Lpr Length of bow chamfer
- Ntanks Number of storage tanks
- NtanksT Number of storage tanks rows
- hDD Height of double deck
- hDB Height of double bottom
- \cdot wDS Width of double side

NGENIERÍA NAVAL.

Analysis

The object of the study FLNG designed in CH- TPN in Brazil in association with Frade Japão Petróleo Ltda.

top view

Table 1 – FLNG main dimensions (Config. A)

Property	Value	units		
Length	463.0	m		
Breadth	80.0	m		
Depth	38.0	m		
Load. Cap.	240,000	ton		
N° Tanks	6	units		
Double Deck	2.0	m		
Double Bottom	3.0	m		
Double Side	2.5	m		

	Case 1	Case 2	Case 3	Case 4	Case 5	units
Tank Length	59	59	59	59	59	m
Tank Width	45,0	52	59	66	73	m
Tank Height	30,1	26.1	23	20.5	18.6	m
Double Deck	2.9	5	6.5	7.7	8.7	m
Double Bottom	3.9	6	7.5	8.7	9.7	m
Double Side	17	13.5	10	6.5	3	m

Table 3 - FLNG main dimensions (Config. B)

Property	Value	units
Length	450.0	m
Breadth	81.0	m
Depth	38.0 m	
Load. Cap.	240,000	ton
N° Tanks	20	units
Double Deck	8.0	m
Double Bottom	5.0 m	
Double Side	3.0 m	

Table 4 - FLNG secondary dimensions (Config. B)

	Case 6	Case 7	Case 8	Case 9	Case 10	units
Tank Length	34.2	34.2	34.2	34.2	34.2	m
Tank Width	22	25.5	29	32.5	36	m
Tank Height	31.9	27.5	24.2	21.6	19.5	m
Double Deck	2.1	4.2	5.9	7.2	8.3	m
Double Bottom	3.1	5.2	6.9	8.2	9.3	m
Double Side	17	13.5	10	6.5	3	m

Interface

Objectives:

 Summarize the main characteristics of each vessel generated
 Compare the cases to each other and classify them rationally

				SELECT				DETAILS			
Fizitin Salid remotion the	ID Length Bean Death Mainmain Draft Freeboard Volume Disglacement Disg		8 40 6 4 2 1	vg0264 29.0 1.0 1.9 4.4		Number of Tanta Namber of Tanta Rove Tant Regit Double Deck Double Bottere Double Bottere Double Bottere Hot Hot Hot Lare		0 2 112.0 28.0 26.0	unt unt m m m m m m m m m		
® TSF			60 64 1 7 7 4 4 4 5 3	29203 44835 11600 7617 29143 0	1 1 1 1			3 2 3 16 19 33			
TECHNOMAR	Titte	Selwaen uff	oods 3		daya	Lar	Privat M.	37			
	1 0.0	30 60 80	16.1 19.7 23.2	82 8.8 45	31144 811.1 679.0	21.4 20.8 22.1	414533 513276 612019	198743 19743 296229	126583 126583 126583		

- The evaluation was done comparing each case proposed using the implemented interface analysis.
- The solution was analyzed according to structural mass, freeboard and seakeeping/downtime performance.

FLNG Total Ballast

Case id	Ballast Mass [t]	Case id	Ballast Mass [t]	4.0 3.5	+ 1 tank	2 tanks			5
1	539,115	6	534,970	3.0			allast mais		
2	474,317	7	466,946	2.5 Ej 2.0		increi	35e in Da		4
3	424,138	8	414,679	1.5 1.0	1	<i>4</i>	2	3 + 8	• 9
4	384,103	9	373,075	0.5	• + 6	7	+		
5	351,243	10	339,030	0.0 8	.0 9.0) 10.0	11.0 1	12.0	13.0 14.0
						Minimu	m Freeboard	[m]	

Case 5 10^{-1} 180 deg 0.6^{-1} 135 deg 0.4^{-1} 0.4^{-1} 0.4^{-1} 135 deg 0.4^{-1} 0.4^{-1} 15^{-1} 20^{-1} 25^{-1} T [s]

Conclusions

- Both proposed tank arrangement cases showed a possibility to reduce freeboard and optimize its behavior in waves and reduce downtime.
- The synthesis model allowed not only to create the desired case condition but also provided a powerful tool to evaluate each case and verify the best solution.
- Finally, the proposed model allows the designer to evaluate and, according to the given environmental conditions, design and study the pertinent features for a vessel in each metocean condition.

Thank You!

