

9

I MI

Organizan

Contract of

1

1

Hydrodynamic Analysis of Inland Vessel Self-Propulsion for Cargo Transport for Navigability in the Magdalena River

Oscar D. Acosta Lopera

- Kazuo Nishimoto
- Jairo H. Cabrera Tovar²
- Numerical Offshore Tank (TPN), Department of Naval and Oceanic Engineering (PNV), Polytechnic School (EP), The University of São Paulo (USP), São Paulo (São Paulo), Brazil.
- 2. Department of Naval Engineering, Faculty of Engineering, The Technological of Bolivar University (UTB), Cartagena (Bolivar), Colombia.

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

1. Introduction

The objective of this work is the study of the resistance of a 2700 DWT self-propelled inland vessel by numerical simulation. The numerical results are compared to the existing empirical formulas and the experimental test results being, therefore, validated.

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

2. Ship geometry

Fig. 1. Lines-plan of the self-propelled inland vessel.

Particulars	Full scale	Model scale
Length between perpendiculars $L_{pp}(m)$	83.86	4.193
Breadth <i>B</i> (m)	14.50	0.725
Design draft T (m)	3.20	0.160
Wet surface area S_{ws} (m ²)	1564.40	3.911
Displacement Λ (m ³)	3560.00	0.445

Table 1. Main particulars of the 2700 DWT inland vessel.

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

8

RANS equation

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} (\rho U_i) = 0, \tag{1}$$

$$\frac{\partial}{\partial t}(\rho U_{i}) + \frac{\partial}{\partial x_{j}}(\rho U_{i}U_{j}) = -\frac{\partial P}{\partial x_{i}} + \frac{\partial}{\partial x_{j}}\left[\mu\left(\frac{\partial U_{i}}{\partial x_{j}} + \frac{\partial U_{j}}{\partial x_{i}} - \frac{2}{3}\delta_{ij}\frac{\partial U_{i}}{\partial x_{i}}\right)\right] + \frac{\partial}{\partial x_{j}}\left(-\rho\overline{u'_{i}u'_{j}}\right)$$

$$\rho = \sum_{i=1}^{2} \alpha_{n}\rho_{n}, \qquad \mu = \sum_{i=1}^{2} \alpha_{n}\mu_{n}, \qquad (3)$$

$$\rho = \sum_{n=1}^{\infty} \alpha_n \rho_n, \qquad \mu = \sum_{n=1}^{\infty} \alpha_n \mu_n,$$

where $x_{i,j}$ $(i, j = 1, 2, 3, i \neq j)$ are the components of Cartesian coordinates, $U_{i,j}$ $(i, j = 1, 2, 3, i \neq j)$ are the mean velocity components, P is the mean pressure, μ is the viscosity, δ_{ij} is the delta Kronecker and $-\rho u'_i u'_j$ is the Reynolds stress tensor.

13/01/2021

For the numerical solution of the viscous flow, the CDF software STAR-CCM+ is applied to the RANS equation solution. The Finite Volume Methods (FVM) is used to the discretization of the computational domain in a Volume Control (VC). The k- ε turbulence model is used to describe the fluid motion in turbulent state. To tracking and locating the free surface, Volume of the Fluid (VOF) is applied.

13/01/2021

Fig. 2. Main flow chart in the STAR-CCM+ solver.

Fig. 3. Overview of the computational domain.

Total elements: 8,307,654.

Free surface zone refinement: x and y axes with 2.12498e-2 m; z with 2.65625E-3 m.

	L	Domain dimensions (m)		
Leng	th 1.00	4.24		
Back	1.98	8.40		
Front	t 0.98	4.16		
Side	0.41	1.75		
Heig	ht 0.19	0.80		

Table. 2. Geometry dimensionsin the computational domain.

х

Fig. 4. . Grid structure around the vessel. Top, midship section; bottom, longitudinal section at symmetry.

13/01/2021

Fig. 5. Numerical damping on STAR-CCM+, where no numerical damping affects the true waves generated by the inland vessel (left), unlike numerical damping with length of 9 m applied only at inlet and outlet boundary conditions (right).

13/01/2021

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

4. Empirical models

Fig. 6. Empirical procedure.

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

5. Methodology

Fig. 7. Numerical procedure.

5. Methodology

Fig. 8. General methodology.

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results
- 7. Conclusions and future works

20

6. Results

 (m / s)	Experimental	CFD	Empirical	CFD	Empirical
0.576	6.89	6.96	5.59	-1.02	18.87
0.691	12.29	10.20	8.00	9.65	29.14
0.806	16.71	14.20	11.52	15.02	31.06
0.921	25.72	19.60	16.06	23.80	37.59

 R_t (N)

Table 3. Comparison of numerical and numerical methods with
experimental results.

 E_{r} (%)

13/01/2021

Tanque de Provas Numérico (TPN), Departamento de Engenharia Naval e Oceânica (PNV), Escola Politécnica (EP), Universidade de São Paulo (USP)

υ

(EP), Universidade de São Paulo (USP)

6. Results

Fig. 11. Velocity distribution generated by 2700 TDW inland vessel in top view.

Max p = 455.77 Pa at 0.576 m/s

0.691 m/s

Max p = 525.56 Pa at

(c) Min p = 144.63 Pa, (f) Min p = 58.274 Pa, (g) Min p = 0.47628 Pa, (h) Min p = 0.32479Max p = 607.50 Pa at Pa, Max p = 702.41 Pa 0.806 m/s

at 0.921 m/s

13/01/2021

6. Results

Fig. 13. Velocity and static pressure distribution generated by 2700 TDW inland vessel in symmetric view.

13/01/2021

- 1. Introduction
- 2. Ship geometry
- 3. Numerical model
- 4. Empirical models
- 5. Methodology
- 6. Results

7. Conclusions and future works

25

7. Conclusions and future work

- The formulations for the empirical methods procedure are satisfactory only in case of vessel navigating in middle rivers.
- The numerical simulations are satisfactory only in case of low velocities. As the speed increases, the relative error also increases up to 18%.
- The numerical simulation results can be corrected with more precision.

7. Conclusions and future work

7.1. Future analysis

- Improve the numerical simulation results.
- Calculate convergence criteria by Grid Convergence Index (GCI) developed by Roache (1998) and described by Celik et al. (2008).
- Calculate and illustrate the pressure coefficient, skin friction coefficient and the dimensionless wall y+ of the hull.

