

SCHOTTEL

SCHOTTEL RUDDERPROPELLER FOR PUSHER OPERATING IN INLAND SHALLOW WATER

Dipl. -Phys. Uwe Weineck Cartagena, 14.03.2013

OUTLOOK

- HISTORY
- SCHOTTEL GROUP
- SHALLOW WATER OPERATION FOR INLAND WATERWAYS
- SCHOTTEL PROPULSION SYSTEMS
- IMPRESSIONS

THE COMPANY'S ORIGIN

Josef Becker (1897 – 1973)

Company site 1950

PRODUCTION PLANTS

top left: SCHOTTEL GmbH in Spay, Germany

top right: SCHOTTEL Schiffsmaschinen GmbH and SCHOTTEL GmbH Plant Wismar, Germany

left: SCHOTTEL Suzhou Propulsion Co., Ltd., Suzhou, PR China

INTERNATIONAL SHIP DESIGN & NAVAL SCHOTTEL IN SPAY ENGINEERING CONGRESS PRODUCTION

DESIGN & NAVALS CHOTTEL IN WISMAR ENGINEERING CONGRESS

PRODUCTION

DESIGN & NAVALS CHOTTEL IN WISMAR PRODUCTION

SCHOTTEL IN SUZHOU - CHINA

DESIGN & NAVAL SHIP SCHOTTEL IN SUZHOU PRODUCTION

SCHOTTEL GROUP WORLDWIDE

SCHOTTEL GmbH
Plant Spay
Production, Sales & Service

SCHOTTEL GmbH Plant Wismar Production

SCHOTTEL GmbH Plant Hamburg Sales & Service **SCHOTTEL Schiffsmaschinen GmbH** Production, Sales & Service

SCHOTTEL Nederland B.V. Sales & Service

SCHOTTEL France s.a.r.l. Sales & Service

SCHOTTEL Suzhou

Production, Sales & Service

SCHOTTEL Inc. USASales & Service

SCHOTTEL do Brasil Propulsoes Sales & Service

About 100 SCHOTTEL sales and service partners in the major shipping centres all over the world

CERTIFICATION

SCHOTTEL is four times certified according to DIN EN ISO 9001:2000 by ABS, BV, DNV und GL

SHALLOW WATER OPERATION FOR INLAND WATER WAYS

General

- inland waterways shipping is the most cost effective, fuel efficient and safest way to transport goods
- flexible tug/barge system with towed barges (established already in 19th century) have been developed into push/barge train (in 20th century)
 - flexibility of transport system
 - push tugs and barges form an integrated system with resistances and propulsive performances quite close to single hull vessels
 - manoeuvring is done by the push tug only, means manning the barge is not necessary
- systems are required whose propulsion and steering units generate adequate thrust and steering force -> distinguished manoeuvrability
- efficient ship operation especially in shallow water is also connected to hull design, space requirement, minimum draught, risk of damage due to grounding, easy maintenance / overhaul
- propellers have to be arranged in a special tunneled or ducted aft body for good efficiency and optimum protection
- speed of river going craft depends mainly on the water depth (shallow water effect)

General

- inland waterways shipping is the most cost effective, fuel efficient and safest way to transport goods
- flexible tug/barge system with towed barges (established already in 19th century) have been developed into push/barge train (in 20th century)
 - flexibility of transport system
 - push tugs and barges form an integrated system with resistances and propulsive performances quite close to single hull vessels
 - manoeuvring is done by the push tug only, means manning the barge is not necessary
- systems are required whose propulsion and steering units generate adequate thrust and steering force -> distinguished manoeuvrability
- efficient ship operation especially in shallow water is also connected to hull design, space requirement, minimum draught, risk of damage due to grounding, easy maintenance / overhaul
- propellers have to be arranged in a special tunneled or ducted aft body for good efficiency and optimum protection
- speed of river going craft depends mainly on the water depth (shallow water effect)

Comparison Rudderpropeller vs Conventional solutions in shallow water

- Rudderpropeller combines steering and propulsion functions and consequently requires less space and less loss of displacement than conventional shaft and rudder installation.
- This leads to higher deadweight capacity, much shorter stopping distances.
- The steering forces of a rudder are low when the ship is moving slowly.

Push/Barge Train Performance

close cooperation with DST (Development Centre for Ship Technology and Transport Systems) in Duisburg / Germany

resistance estimation of push/barge train

Push/Barge Train Performance

Vergleich einspuriger Verband je 1 und 2 gliedrig bei einer mittleren Wassertiefe und vier Tiefgängen

Push/Barge Train Performance

close cooperation with DST (Development Centre for Ship Technology and Transport Systems) in Duisburg / Germany

- resistance estimation of push/barge train
- model propulsion test

3 INTERNATIONAL SHIP DESIGN & NAVASHALLOW WATER OPERATION ENGINEERING CONGRESS FOR INLAND WATERWAYS

Push/Barge Train Performance

Push/Barge Train Performance

close cooperation with DST (Development Centre for Ship Technology and Transport Systems) in Duisburg / Germany

- resistance estimation of push/barge train
- model propulsion test
- layout of propeller protection

Push/Barge Train Performance

Push/Barge Train Performance

close cooperation with DST (Development Centre for Ship Technology and Transport Systems) in Duisburg / Germany

- resistance estimation of push/barge train
- model propulsion test
- recommendation of propeller protection layout
- recommendation of special tunneled or ducted aft body; skegs

Push/Barge Train Performance

SCHOTTEL PROPULSION SYSTEMS

SCHOTTEL PROPULSION SYSTEMS

Product range

SCHOTTEL RUDDERPROPELLER

SCHOTTEL RUDDERPROPELLER

SCHOTTEL RUDDERPROPELLER FIXED PITCH

	Power*	Diameter	rpm	Weight
	[kW]	[m]	[min ⁻¹]	[t]
SRP 0320	150-220	0.65-0.85	1800/2300	1.50
SRP 170	220-280	0.90-1.10	1800/2000	1.65
SRP 200	280-350	1.00-1.20	1800/2100	2.10
SRP 330	400-530	1.25-1.40	1800	3.60
SRP 440	600-780	1.45	1600/1800	7.50
SRP 550	630-920	1.50-1.75	1000/1200 / 1500/1800	9.60

^{*}The max. allowable power per unit is dependent on the vessel type, the operation profile, the specific use and the classification of the vessel.

SCHOEFINE LAVE UDDERPROPELLER

FIXED AND CONTROLLABLE PITCH

	[kW]	[m]	[min ⁻¹]	[t]
SRP 1012	1150-1400	2.10	750/900/1000/ 1200/1600/ 1800	17.00
SRP 1212	1380-1650	2.30	750/900/1000/ 1200/1600/ 1800	17.50
SRP 1215	1500-1800	2.40	750/900/1000/ 1200/1600/1800	19.50
SRP 1515	1750-2200	2.60	750/900/1000/ 1200/1600/1800	27.50
SRP 2020	2200-2600	2.80	750/900/1000/ 1200/1800	40.00
SRP 3030	2850-3400	3.40	600/750/ 900/1000	53.00
SRP 4040	3350-4000	4.00	600/800/1000	78.00
SRP 4500	4000-4900	4.20	750/900/1000	65.00

^{*}The max. allowable power per unit is dependent on the vessel type, the operation profile, the specific use and the classification of the vessel.

SRP - SCHOTTEL RUDDERPROPELLER Different Kinds of Installation

rigid well mounted from above

rigid well mounted from below

A) from above

B) from below

SCHOTTEL RUDDERPROPELLER

SCHOTTEL RUDDERPROPELLER

- special attention to avoid air intake to the propellers
- well mounting allows optimum tunnel design for maximum propulsion efficiency
- optimum slope angles for such tunnels:
 - less than 18° in front of propeller
 - less than 12° aft of propeller
 - less than 30° to the ship's side

SCHOTTEL RUDDERPROPELLER

not in Scale

SCHOTTEL RUDDERPROPELLER

standard

von der Stein nozzle

SCHOTTEL RUDDERPROPELLER

- depth adjustment facility
 - swing out
 - can be installed on an extremely diverse range of vessels

IMPRESSIONS

IMPRESSIONS

IMPRESSIONS

YOUR PROPULSION EXPERTS