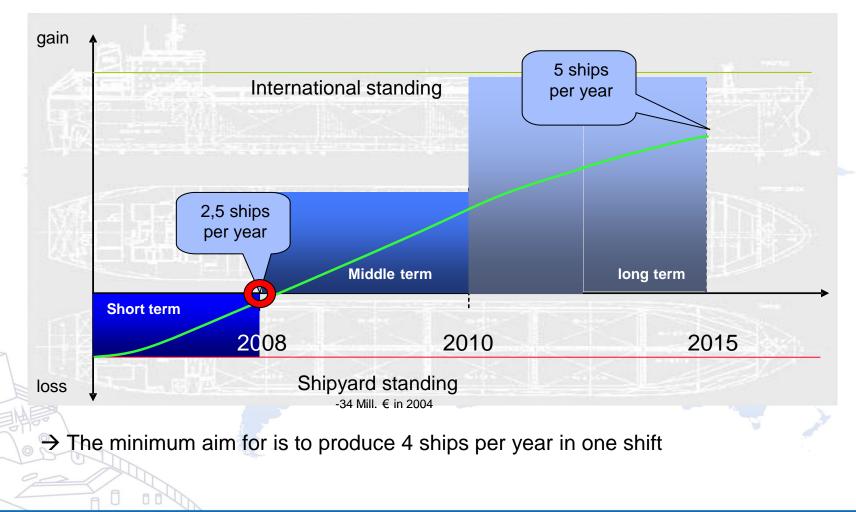


ACTION PLAN FOR RESTRUCTURING THE TECHNOLOGY OF A MEDIUM SIZED SHIPYARD

Ulrich Kothe

Fraunhofer Gesellschaft e.V., Fraunhofer Application Centre for Large Structures in Manufacturing; ulrich.kothe@hro.ipa.fraunhofer.de; Rostock, Germany; Tel:+49 (381) 49682-50


Project requirements Table of contents

Analysis of functional and spatial structures
Results of the concept phase
Solution 1: Accuracy Control
Solution 2: Part fabrication
Solution 3: Panel fabrication
Solution 4: Outfitting
Solution 5: Section assembly
Solution 6: Ring and final assembly
Solution 7: Organisation
Solution 8: Design requirements
Final layout
Roadmap of implementation
Productivity analysis

Project requirements

Definition of achievable project results

Project requirements Applied methods

		Applied method for the analysing phase							
Analysis Fields	Description	Simulation	Input- Output relation	Benchmark	Planning table	Value Stream	Question- naire		
1	Analysis applying lean principles					x			
2	Analysis bottlenecks / improvable processes		х				(x)		
3	Analysis crane capacity and technology	X	x X		- States		(x)		
4	Analysis communication and information flow			the states		x			
5	Analysis core competencies	1. S.					х		
6	Analysis Micro Panel Line		x	х					
7	Analysis organization of work	B.	х				(x)		
8	Analysis outfitting performance		X	X		E.	Ľ		
9	Analysis of payment methods	14134		х	- 18				
10	Analysis process orientation					x			
11	Analysis second slipway	Х	X			and a			
12	Analysis spatial structures and flow				x				
13	Analysis welding speed and quality			x	FIN	1 the			
14	Analysis of new outfitting place			1		x			

14 analysis fields will be analysed with the methods:

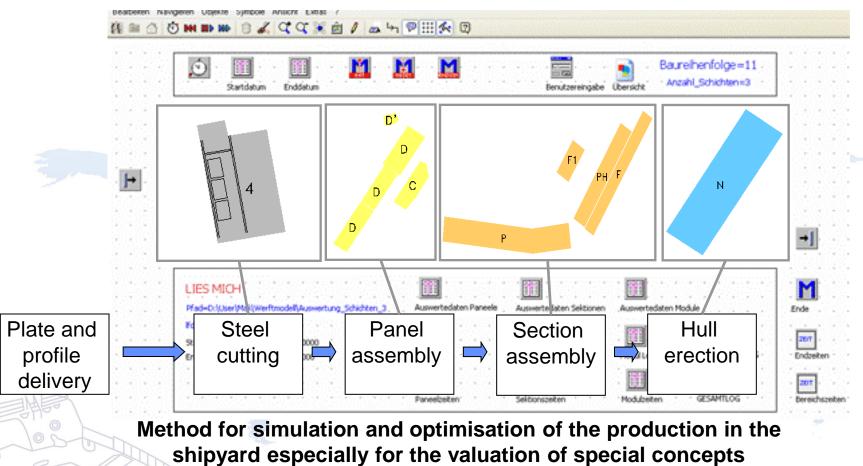
- Shop floor simulation
- Input-output relation
 - Benchmark
 - Planning Table
 - Value stream
 - Questionnaire

Analysis of functional and spatial structures Agenda

	Project requirements
	Analysis of functional and spatial structures
	Results of the concept phase
	Solution 1: Accuracy Control
	Solution 2: Part fabrication
	Solution 3: Panel fabrication
	Solution 4: Outfitting
	Solution 5: Section assembly
	Solution 6: Ring and final assembly
	Solution 7: Organisation
	Solution 8: Design requirements
	Final layout
	Roadmap of implementation
	Productivity analysis
1050	

Analysis of functional and spatial structures Introduction: Steel throughput per ship II

	abs. weights per workplace [t]	abs. weight propotion [%]
Plate fabrication	144,0	1,4%
Profile fabrication	9252,1	86,9%
T1-T5 (Panel line)	1393,9	13,1%
	2713,7	25,5%
PH (Section assembly)	688,7	6,5%
	5346,6	50,2%
F (Section assembly)	905,3	8,5%
	7359,5	69,1%
F1 (Section assembly)	1377,4	12,9%
	3316,7	31,2%
P (Section assembly)		
C (Micro panel)		
	0.0	0.0%
D (Micro panel)	0,0	0,0%
	62,4	0,6%
hull erection	10645,95	


 The steel throughput for one ship is approx. <u>10646 tons</u> based on the reference sections

This value does match with the questionnaire

 \rightarrow Our model of reference section is sufficient for further investigations

Analysis of functional and spatial structures Simulation: Introduction into the shipyards simulation model

Analysis of functional and spatial structures Simulation: Introduction *prerequisites of the different workshops*

Steel cutting and bending

- simulating with 3 shifts (pure working time)
- plate cutting
 - consists of 3 parallel workstations
 - buffer for plates is 10 sections
 - crane for the transportation of plates from buffer to panel assembly
- profile cutting
 - 1 workstation (representing the cutting robots)
- plate bending
 - 1 workstation (including all plate bending facilities from the shipyard)
- profile bending
 - only relevant for one reference section → has an low overall influence on simulation time → currently not included in the model

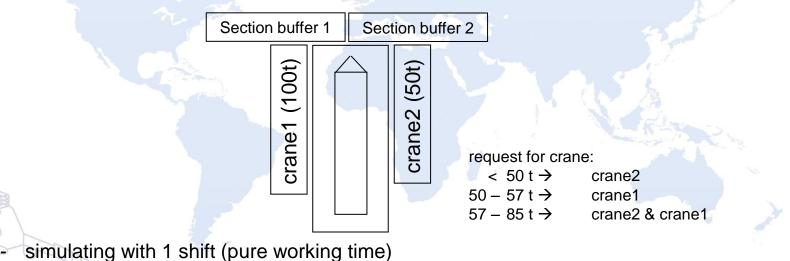
Analysis of functional and spatial structures Simulation: Introduction *prerequisites of the different workshops*

panel assembly

- consists of 5 serial workstations representing the 5 stages of assembly
- every stations needs 1/5 of the assembly duration (1/5 of 32h)
- profile portal tests if profiles from profile cutting are ready and available
- simulating with 2 shifts (pure working time)

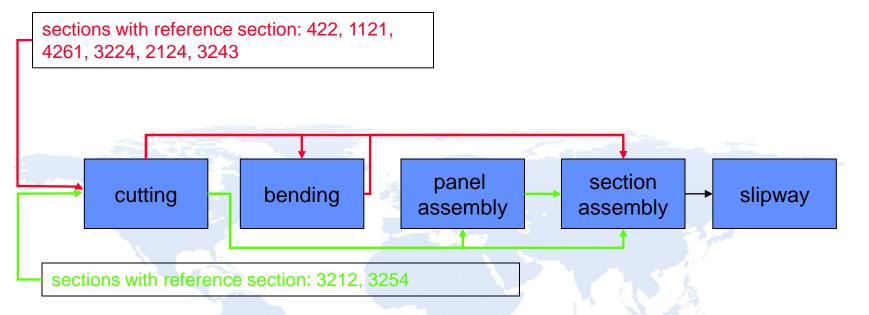
section assembly

- maximum of sections which can be assembled parallel: 30
- average space requirement per section: 216m² (calculated from the section fabrication table)
- simulating with 1 shift (pure working time)
- curved sections and micro-panels are currently included in the section assembly with the simulation model



Analysis of functional and spatial structures

Simulation: Introduction prerequisites of the different workshops


slipway

- maximum of sections which can be assembled parallel: 2
- sections are allocated to section buffer 1 (starboard) or section buffer 2 (port) according to their weight:
 - up to 50t \rightarrow section buffer 2 is used
 - · up to 85t → section buffer 1 (port) OR workspace2 (starboard) is used
 - up to 100t \rightarrow only section buffer 1 is used

Analysis of functional and spatial structures Simulation: Introduction *simulation flow model*

- parts from plate or profile cutting are transported to panel assembly or section assembly; plates that have to be bended are send to plate bending
- in the panel assembly plates and profiles are assembled to panels
- in the section assembly the fabricated plates and panels are assembled to sections

Analysis of functional and spatial structures Simulation: Introduction prerequisites of the production data of sections

general prerequisites

- simulating with 170 sections
- sections 4581 to 4584 are only handled as one section with reference section number 422
- section 3413 with a weight of 190t is spitted into two sections (3413 and 3414)
- section 1161 is spitted into three sections (1161, 1162 and 1163)
- order of production according to order of sections is based on information of assembly tree of the ship no. 315

steel cutting and bending

- the simulation is section oriented:
 - all parts of one section (profiles and panels) are summarized to three working packages (profile cutting, plate cutting, plate bending)
 - \rightarrow three parts to simulate the assembly duration in cutting and bending in simulation model

panel assembly

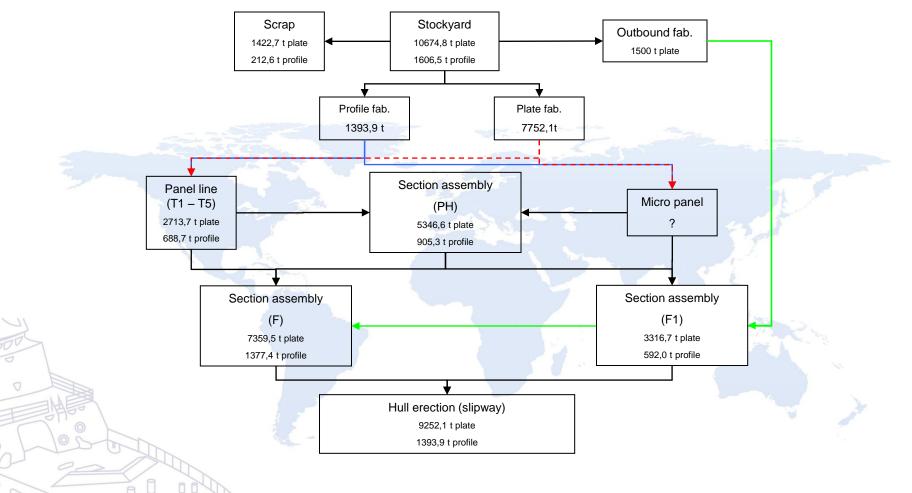
- assembling of two parts coming from plate and profile cutting

section assembly

assembling of third part (from plate bending) with panels coming from panel assembly

Analysis of functional and spatial structures Simulation: Analyse the bottlenecks

Simulation of the execution time for each shop in consideration of one berth


ш.м	Modelle.WERFTABLAUF.tab_Duration_times							S. Modelle. WERFTABLAUF. Dockmontage				
	Datei Bearbeiten Format Navigieren Ansicht Extras ?						: Beatekten Navigieren Objekte Symbole Ansicht Extras ?					
-	= 😂 🖬 🎒 🙆 🐰 🖻 🖻 🕆 🖬 🗰 🗰 🗰						Baureihenfolge=1 Kakodutv=0					
315	string	time	time 3	time 4	time	time 6	time 7					
string	Object	Start_Plate_cutting	Start_plate_bending	Start_Panelline	Start_assembly_section	Start_assembly_slipway	End_assembly_slipway	Objekt_2=n.b. Objekt_3=n.b. Ausgang Schiffskärper				
1	315	0.0000	2:14:02:00.0000	3:13:02:00.0000	2:14:01:00.0000	21:06:02:00.0000	164:07:01:00.0000	Status_Chji=n.b.				
2	316	127:16:33:00.0000	134:17:46:00.0000	133:10:35:00.000	132:22:34:00.0000	164:07:02:00.0000	294:07:01:00.0000	Trackendock				
3	317	257:14:49:00.0000	264:16:02:00.0000	263:08:51:00.000	262:20:50:00.0000	294:07:02:00.0000	424:07:01:00.0000	AngModule Obil=0				
4	318	387:13:05:00.0000	394:14:18:00.0000	393:07:07:00.000	392:19:06:00.0000	424:07:02:00.0000	554:07:01:00.0000	Anthodue_obj2=0				
5								Methoden Listen Pufferplatz Anarooue_00;3=0				
6												
7								· · · · <mark>M</mark> · · · · · <mark>M</mark> · · · · · · · · · · · · · · · · · · ·				
8								Bauplatzsuchen Puffer_eingang DLZ gefertigter Schiffskörper				
9												
10												
11								T				
1		1	1	1	1		1	Pufferbelegung				
								< · · · · · · · · · · · · · · · · · · ·				

Conclusion:

- \rightarrow Duration time on the berth is 130 days \rightarrow This matches with the project schedule of the shipyard
- \rightarrow Bottleneck in the steel fabrication is the plate and profile fabrication \rightarrow they determine the panel and the section assembly processes
- \rightarrow The cranes on berth are another bottleneck, especially the 100 t crane

Analysis of functional and spatial structures Input-output relations: *steel input and output*

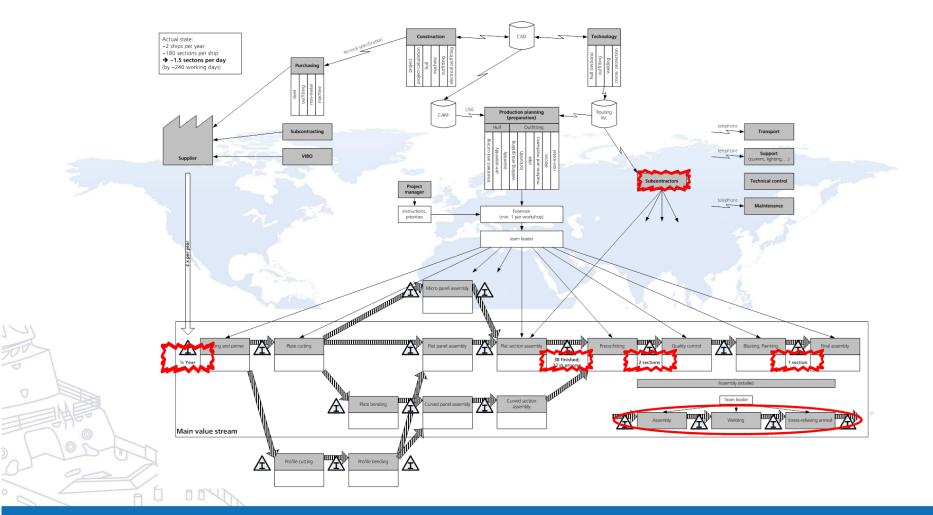
Analysis of functional and spatial structures Input-output relations: Demands on the capacity

Estimation on capacity demands for each workshop due to the aimed output of the shipyard

workplaces	1121	2124	3212	3224	3243	3254	4261	422	$\overline{}$		
late fabrication	0 159,924	566,5256	3376,59	1692,096	1796,79	1220,492	154,468	285,198	9252,08		
rofile fabrication	0 5,464	86,752	557,718	302,036	0	349,496	40,26	52,144	1393,87		
ull erection	0 165,388	653,2776	3934,31	1994,132	1796,79	1569,988	194,728	337,342	10645,95 t/year		
,2 ships (per anno	D)									2.2	\rightarrow The demand of
workplaces	1121	2124	3212	3224	3243	3254	4261	422			capacities in
late fabrication	351,833	1246,356	7428,5	3722,611	3952,94	2685,082	339,83	627,436	20354,58		
rofile fabrication	12,0208	190,8544				768,8912	88,572	114,717	3066,51		consideration of 4
ull erection	363,854	1437,211	8655,48	4387,09	3952,94	3453,974	428,402	742,152	23421,10 t/year		ships per year shows
,5 ships (per anno	o)			an and a						\geq	that the shipyard has to manufacture a
workplaces	1121	2124	3212	3224	3243	3254	4261	422		1	steel throughput of
late fabrication	,	1416,314		,	4491,98	3051,23	,	712,995	23130,21	1	approx. 37.008 t
rofile fabrication	13,66	216,88	1394,3	755,09	0	873,74	100,65	130,36	3484,68		
ull erection	413,47	1633,194	9835,77	4985,33	4491,98	3924,97	486,82	843,355	26614,88 t/year	÷.	plates and 5.575 t
ships (per anno)											profiles
workplaces	1121	2124	3212	3224	3243	3254	4261	422			
late fabrication	639,696	2266,102	13506,4	6768,384	7187,16	4881,968	617,872	1140,79	37008,33		
rofile fabrication	21,856	347,008	2230,87	1208,144	0	1397,984	161,04	208,576	5575,48		
	661,552					6279,952			42583,81 t/year		

Analysis of functional and spatial structures Input-output relations: Analysis of the bottlenecks *berth cranes* 2

Balancing the capacity


The cranes have to meet the following capacity demands:

Ships	per	Work hour	son berth	Other utilisation		Overall work time		Utilisation ratio	
yea	r								
		starboard	portside	starboard	portside	starboard	portside	starboard	portside
		h/year	h/year		(a)	h/year	h/year		
1		57	310			668	620	32%	32%
2,2		125	682	70% =	60% =	1469	1834	77%	96%
			· 32	🔍 1344h	1152h	1000			And
2,5	5	142	775			1669	2084	87%	109%
4		227	1240			2671	3335	139%	174%

For an annual production of 2,5 ships the portside-crane just exceeds its capacity limit The aimed production of 4 ships per year exceeds the portside-cranes capacity for more than 70% and the starboard-cranes capacity approx. 40%

Analysis of functional and spatial structures Value stream: Analysis

Analysis of functional and spatial structures

Value stream: Analysis – material flow and process orientation

Problems due to function-orientation:

- Big inventory buffers \rightarrow long lead times
- Imbalances in the timing of operations are hidden
 → bottlenecks are hidden
- Feedback from later operations to earlier operations is delayed → when a defect is discovered it is not clear when or why it was produced
- Low motivation for improvement → problems are not eliminated
- Extra handling is necessary \rightarrow e.g. for sorting
- Extra floor space is needed → blocked ways of transportation
- Extra inventory costs money → chance to raise money for necessary investments

Analysis of functional and spatial structures Value stream: Analysis – *5S and continuous improvement*

- There is no accountability for orderliness and cleanliness
- There are no standards how the production area and the workplaces have to look like
- Obviously the responsibilities are not clearly defined (worker or maintenance)
- Waste and scrap disposal is badly organized, no defined places for dustbins and scrap containers
- → result: additional steering and work expenditure and very messy production area
- No standard process for handling improvement suggestions
- No responsible person to assess, decide and control the implementation of improvement suggestions
- Same situation for simplification of design (design for manufacturing)

→result: many problems are obvious but nobody feels responsible for their elimination

Analysis of functional and spatial structures Overall results 1

	Analysis Fields	Description	Results			
	1	Analysis applying lean principles	1. Push priciples applied on the shipyard increasing the inventory buffers and the duration time			
	2	Analysis bottlenecks / improvable processes	1. A bottleneck is the crane capacity of the steel fabrication and the 100t crane on the berth -> new transport or positioning systems			
	3	Analysis crane capacity and technology	1.The crane in plate and profile fabrication can handle 25000t this means approx. 2,5 ships 2. The crane on the berth could handle approx. 2,5 ships			
	4	Analysis communication and information flow	1. On the shipyard does not exist any information system. The applied CAD or CAM systems do not work together			
	5	Analysis core competencies	1. Analysis is not done -> Brodotorgir has to define the scope of the analysis			
	6	Analysis Micro Panel Line	1. Detailed analysis is not done -> Currently no investment into a Micro Panel Line is recommended by Fraunhofer			
1001	7	Analysis organization of work	 Ratio white collar to blue collar is to high -> white collars could handle the workload of 4 ships Following the lean principiles 			

Analysis of functional and spatial structures Overall results 2

Analysis Fields	Description	Results			
8	Analysis outfitting performance	1. Outfitting performance should be improved -> pipe outfitting			
9	Analysis of payment methods	1. Payment methods (especially for subcontractors) is improvable -> budgeting			
10	Analysis process orientation	1. All processes are functional oriented. The proces-ses are not arranged according the material flow			
11	Analysis second slipway	1. Capacity of the first berth is able to produce 4 ships			
12	Analysis spatial structures and flow	1. the structure of spatials and the material flow are developed due to different steps of accomodation to the modernization of workshops. A workflow in one direction is not possible			
13	Analysis welding speed and quality	 Quality assurance should be improved -> establish existing measurement system Mechanic welding systems should be established in section assembly -> investment in technology 			
14	Analysis of new outfitting place	1. To improve the capability of the outfitting workshops up to an international standard an new outfitting workshops with new facilities is nessecary. 2. Untypical outfitting tasks should be outsourced (Pipe fabrication, ventilation, electrician)			

0 6

Results of the concept phase Agenda

	Project requi	rements	
	Analysis of fu	inctional and spatial structures	
	Results of th	ne concept phase	
		Solution 1: Accuracy Control	
		Solution 2: Part fabrication	
		Solution 3: Panel fabrication	
		Solution 4: Outfitting	and and
		Solution 5: Section assembly	
		Solution 6: Ring and final assembly	
		Solution 7: Organisation	N. Contraction
		Solution 8: Design requirements	and the second se
	Final layout		
	Roadmap of	implementation	
	Productivity a	analysis	
9	- Mul		

Results of the concept phase Introduction

Analysis fields

- 1. Analysis applying Lean principles
- 2. Analysis bottlenecks
- 3. Analysis crane capacity and technology
- 4. Analysis information and communication flow
- 5. Analysis core competencies
- 6. Analysis Micro Panel Line
- 7. Analysis of new outfitting place
- 8. Analysis organization of work
- 9. Analysis outfitting performance
- 10. Analysis of payment methods
- 11. Analysis process orientation
- 12. Analysis second berth
- 13. Analysis spatial structures and flow
- 14. Analysis welding speed quality

The analysis fields have been analysed with the applied methods simulation, input-output relation, value stream, planning table, benchmark and questionnaire

Concept fields middle short long term '07 '08 *´*10 year **Concepts for accuracy control Concepts for part fabrication Concepts for panel fabrication Concepts for pipe outfitting Concepts for section assembly Concepts for ring & final assembly Concepts for organisation Concepts for design requirements**

Results of the concept phase

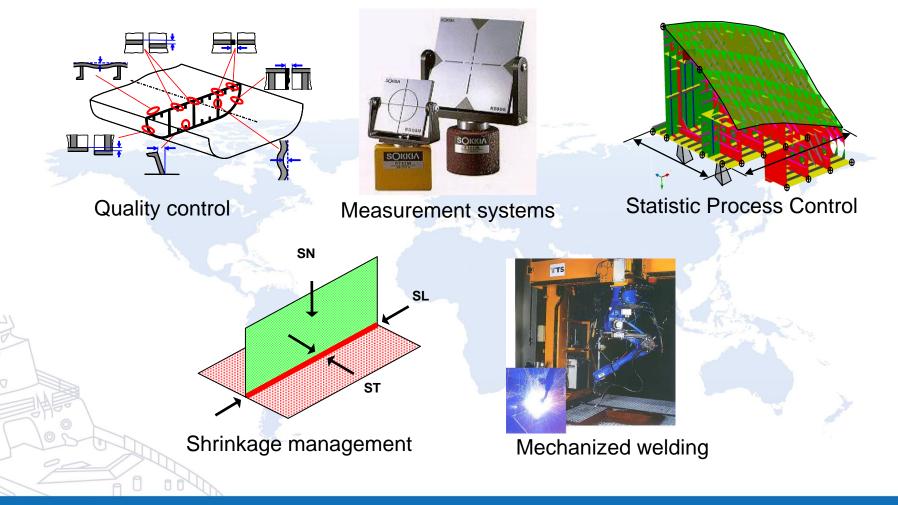
Overview of the solutions

	Short term concepts 2007	Mid term concepts 2008-2009	Long term concepts >2010
Solution 1 Accuracy control and shrinkage management	 Implementation of measurement tasks and techniques Development of accuracy control / production 	 Introduction of mechanised welding (BUGO-Mat) Implementation of shrinkage management 	
Solution 2 Part fabrication	 Retrofitting the plate bending facility Production maintenance 	 Investments in new cutting building Relocation of plate and profile fabrication 	•Upgrade profile bending
Solution 3 Panel fabrication	 Improve the egg box integration (Process design) Implementation of open section assembly on the panel line 	 Relocation of the panel line Introducing a mechanised micro panel fabrication 	•Upgrading the flat panel fabrication
Solution 4 Outfitting	 Implementation of new design principles and modern pipe connections Increasing final documentation of pre-outfitting (Simultaneous Engineering) 	 Subcontracting pipe fabrication Relocation and elimination of outfitting workshops New 35t crane 	

Results of the concept phase

Overview of the solutions

	Short term concepts 2007	Mid term concepts 2008-2009	Long term concepts >2010
Solution 5 Section assembly	•Reorganisation of the areas		•Closed section assembly building with a 160t crane
Solution 6 Ring and final assembly		•New 160t crane •Enlarge the launching berth	 Installation of a transportation and positioning system Introducing ring section assembly Improve the ring section pre- outfitting
Solution 7 Organisation	 Implementation of steady collection procedures of production times for ERP, PPC and Simulation Implementation of a shop floor simulation Implementation of matrix organisation Clearing the workshops 	•Change the payment method for subcontractors	
Solution 8 Design requirements	•Standardisation (Design for manufacturing; Design for assembly; Simultaneous Engineering)		



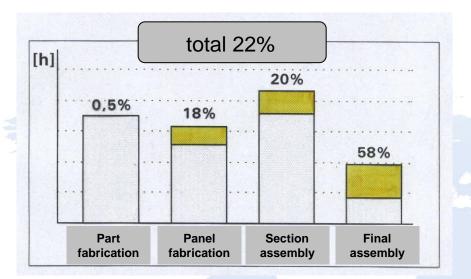
Solution 1: Accuracy Control Agenda

Project requi		
Analysis of fu	Inctional and spatial structures	
Results of the	ne concept phase	
	Solution 1: Accuracy Control	
	Solution 2: Part fabrication	
	Solution 3: Panel fabrication	9
	Solution 4: Outfitting	
	Solution 5: Section assembly	
	Solution 6: Ring and final assembly	
	Solution 7: Organisation	
	Solution 8: Design requirements	
Final layout		120
Roadmap of	implementation	
Productivity a	analysis	

Solution 1 Parts of accuracy control

Solution 1

Quality control: Necessity of a quality control group – types of rework

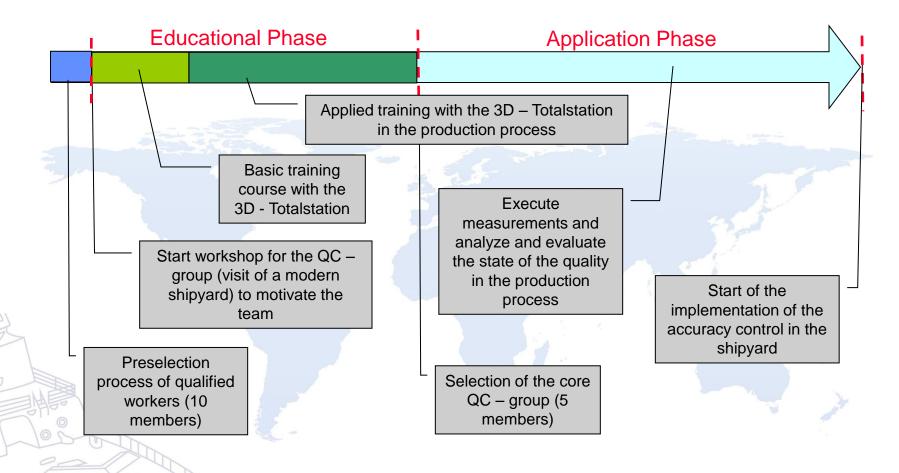

A plenty of reworks happens in the shipbuilding manufacturing process. The largest part of them can be reduced or canceled through the implementation of accuracy control.

Example A: Example B:	Example A:	Unfixing welding beam and displacing
Example A: Example B: Example G: B	Example B:	Cutting of material or edge deposit welding
Example C:	Example C:	Material cutting / deposit; difficult in curved areas
	Example D:	Alignment and rework
Example D:	Example E:	Warming up
	Example F:	Mechanical force alignment
Example E:)	Example G:	Thermal straightening

Solution 1

Quality control: Necessity of a quality control group – costs of rework

Rate of reworks:

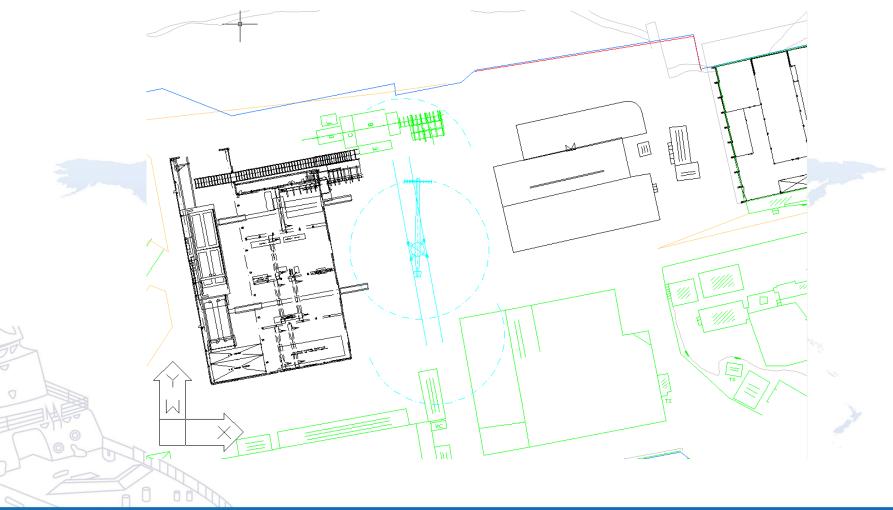

- Straight works at the mounting joint
- Straight works outside the mounting joint
- Reworks of dimensional corrections
- Reworks of joint-fit cutting

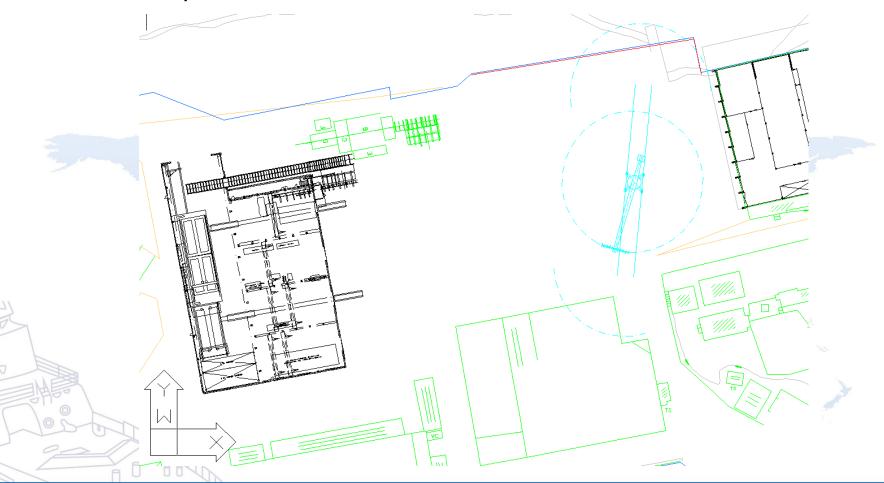
In **modern** shipyards **the implementation of accuracy control** saves up to 22% of the production costs by reducing the necessary reworks.

 \rightarrow The achievable results could be higher for the shipyard

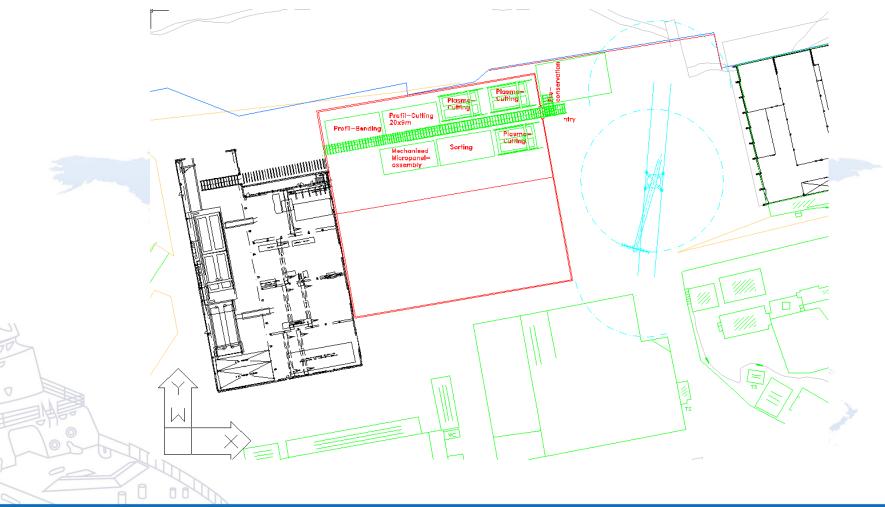
Solution 1 Quality control: Road map of implementation

Solution 2 + 3: Part and panel fabrication Agenda


	Project requirements					
	Analysis of functional and spatial structures					
Results of the concept phase						
		Solution 1: Accuracy Control				
		Solution 2: Part fabrication				
		Solution 3: Panel fabrication				
		Solution 4: Outfitting				
		Solution 5: Section assembly				
		Solution 6: Ring and final assembly				
		Solution 7: Organisation				
		Solution 8: Design requirements				
	Final layout					
Roadmap of implementation						
	Productivity a	analysis				


Solution 2 + 3 New concept

- •Relocation of the part fabrication
 - Warehouse
 - Cutting workshop
 - Bending workshop
- •Relocation of the panel fabrication
 - Micro panel fabrication
 - Flat panel fabrication
 - Closed section assembly
 - → Building a new part and panel fabrication building under the following requirements:
 - Ongoing production
 - Minimal investments
 - Optimised material flow
 - Future orientation for further increase beyond the proposed scheme



Solution 2 + 3 Roadmap of implementation

- 1. Relocate the steel stock
 - a. Pull down the old warehouse
 - b. Level the ground
 - c. Relocate the crane to the new steel stock
 - d. Relocate the steel warehouse steel to its new place
- 2. Relocate the pre-conservation
 - a. Construct a new building for the pre-conservation
 - b. Move the pre-conservation
 - c. Demolition of old pre-conservation-building
- 3. Build part 1 of the new steel fabrication building
- 4. Move plasma-cutting, profile-cutting and profile-bending
- 5. Build part 2 of the new steel fabrication building
- 6. Relocate the panel line
- 7. Integrate the micro panel line
- 8. Upgrade the panel line for the 4th and 5th workplace

Solution 4: Outfitting Agenda

	Project requirements
	Analysis of functional and spatial structures
	Results of the concept phase
	Solution 1: Accuracy Control
	Solution 2: Part fabrication
	Solution 3: Panel fabrication
	Solution 4: Outfitting
	Solution 5: Section assembly
	Solution 6: Ring and final assembly
	Solution 7: Organisation
	Solution 8: Design requirements
	Final layout
	Roadmap of implementation
	Productivity analysis
100	

Solution 4 Sub-contracting pipe fabrication

- The core competence of the shipyard is the development and installation of pipe systems
- The preparation of pipes can be done more efficiently by special pipe manufactures
 - Cutting, bending and flanging the pipes by subcontractors
- Therefore the preparation of pipes should be outsourced to reduce costs as a middle term solution
- The free workers will be relocated to the pre-outfitting of sections and rings to decrease the duration time of pre-outfitting
- Warehouse for the pipes on 600m²
 - Buffering the pipes on stackable pallets
 - Delivering the pipes JIT (small stock)
- → the shipyard is responsible for the assembly of the pipe traces and the preparation of adjusting pipes

Solution 4 Relocation and elimination of outfitting processes

- Along with the concentration on the core competencies the number of outfitting workshops has to be reduced
 - \rightarrow The halls and buildings are no longer necessary for the outfitting
- Corresponding to the strategic plan of the shipyard to install a new ship repair division, these buildings and the workers should be a part of the new repair division
 - \rightarrow This will decrease the numbers of workers and areas for the shipbuilding division and decrease the productivity
 - \rightarrow Foreman's of the shipyard could found a company with the help of the shipyard to decrease the outfitting processes at the shipyard
- A Benchmark has shown that a comparable shipyard will require approx. 6000 m² for all outfitting workshops including warehouse

Solution 4 Area allocation for outfitting 2

•For all other workshops 3300m² of the warehouse are allocated

- 2300m² as warehouse (with balconies to transport the outfitting components directly from the warehouse to the ship)
- Approx. 1000m² for preparation

→ The available area for outfitting at the shipyard exceeds the benchmarked shipyard

Outfitting 3300m2:

Warehouse

Electricity, Joiner,

balcony 10m²

Locksmith, Ventilation,

balcony 20m

35t/

25t

Solution 5: Section assembly Agenda

Project requirements
Analysis of functional and spatial structures
Results of the concept phase
Solution 1: Accuracy Control
Solution 2: Part fabrication
Solution 3: Panel fabrication
Solution 4: Outfitting
Solution 5: Section assembly
Solution 6: Ring and final assembly
Solution 7: Organisation
Solution 8: Design requirements
Final layout
Roadmap of implementation
Productivity analysis

Solution 5 Calculation of section assembly areas - Current state of the art

Present Brodo Trogir					
area	length [m]	width [m]	floorspace [m²]	working hours [h/d]	weighted floorspace
С	47	15	705	10	294
D	56	24	1344	10	560
D	13	10	130	10	54
F	155	15	2325	10	969
F1	41	19	779	10	325
Р	186	26	4836	10	2015
PH	120	16	1920	10	800
total					5016 m²
steel throughput					45000 t/a
- ,					8,97 t/a*m²

Benchmark					
floorspace steel throughput	400	62	24800	24	24800 m² 100000 t/a 4,03 t/a*m²

factor

222 %

 \rightarrow the shipyard could assemble sections for 2,5 - 3 ships maximum in reference to the current production (1 shift)

 \rightarrow The section assembly area is a bottleneck in the middle term solution

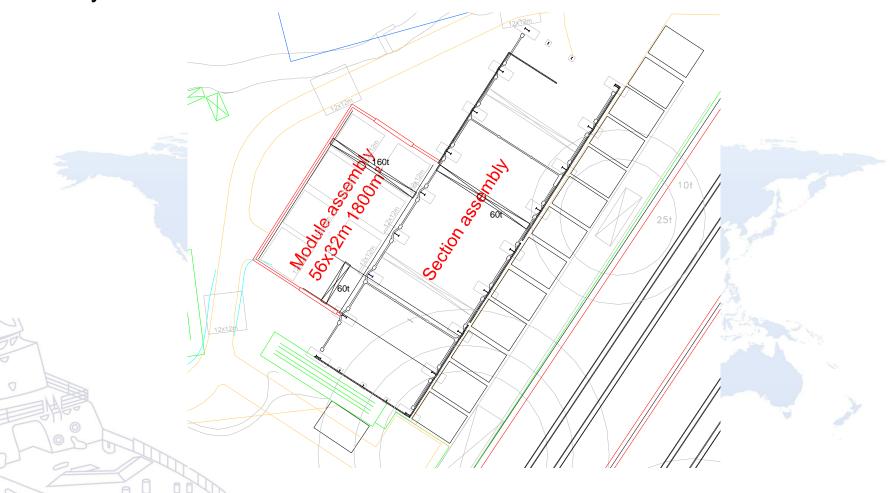
Solution 5

Calculation of section assembly areas-Future scenario with closed

asser	assen ative state of Brodotrogir								
		length	width	floorspace	workinghours	weighted			
	Area	[m]	[m]	[m²]	[h/d]	floorspace			
	Closed section building	40	13	520	24	520			
	Section assembly hall	155	33	5115	24	5115			
	Modul assembly hall	56	32	1792	24	1792			
	Berth	160	32	5120	10	2133			
	Total floorspace		-5		5.55	9560 m ²			
	Steel throughput					45000 t/a			
						4,71 t/a*m ²			

				and the second		
Benchmark		6-2				E Said
Total floorspace	400	62	24800	Ser.	24	24800 m ²
Steel throughput						100000 t/a
and the second					V. t	4,03 t/a*m ²

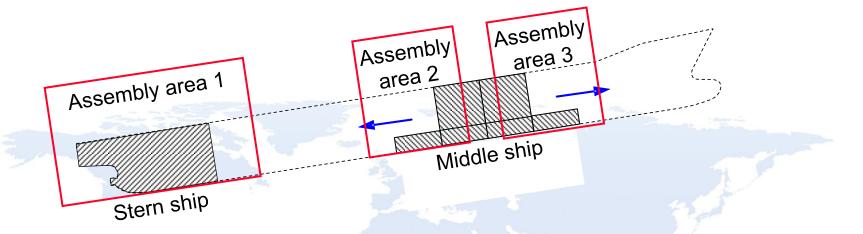
factor


117 %

 \rightarrow the shipyard can produce sections for > 5 ships/year in consideration of the closed section assembly area (3 shifts) plus the berth in one shift

→Erection of an additional building for section / module assembly is necessary as a long term solution

Solution 5 Layout

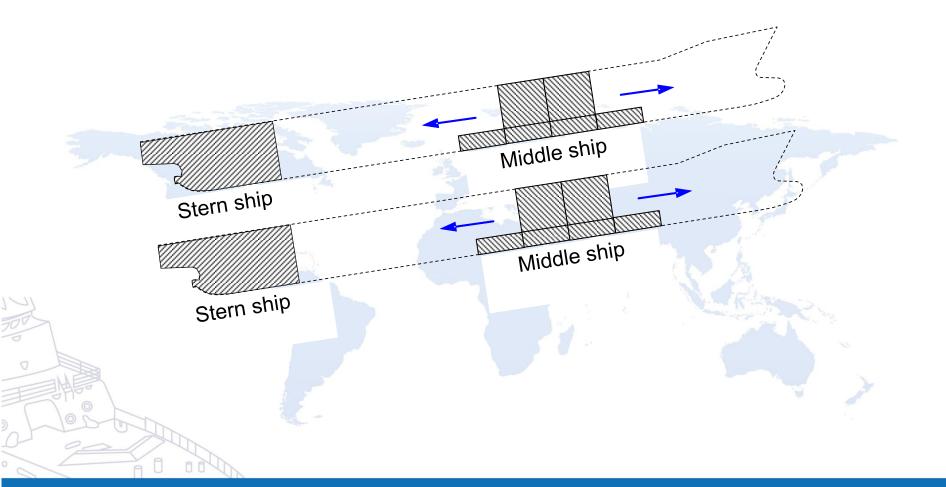


Solution 6: Ring and final assembly Agenda

	Project requirements	
	Analysis of functional and spatial structures	
	Results of the concept phase	
	Solution 1: Accuracy Control	
	Solution 2: Part fabrication	
	Solution 3: Panel fabrication	
	Solution 4: Outfitting	
	Solution 5: Section assembly	
	Solution 6: Ring and final assembly	
	Solution 7: Organisation	
	Solution 8: Design requirements	
	Final layout	
	Roadmap of implementation	
	Productivity analysis) y
1000		

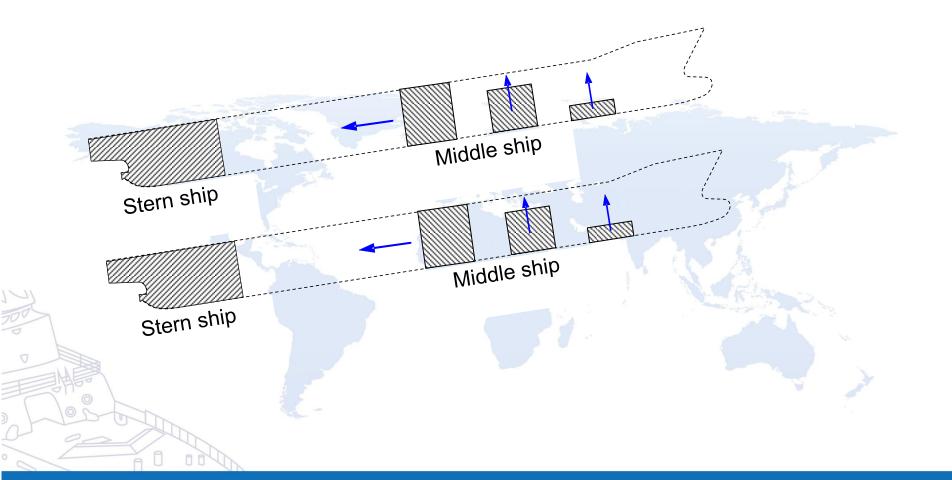
Solution 6 Production during the launching berth enlargement 2

Variant : pyramid assembly

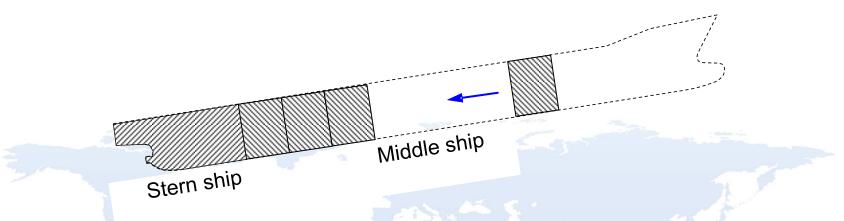

- Stern ship assembly
- Parallel pyramidal erection
 - Identification of the starting point of assembly (erection level, distance,..) could easily be measured

• Advantages: parallel erection of three areas of the ship and decrease of the duration time

→ Using the tandem assembly method



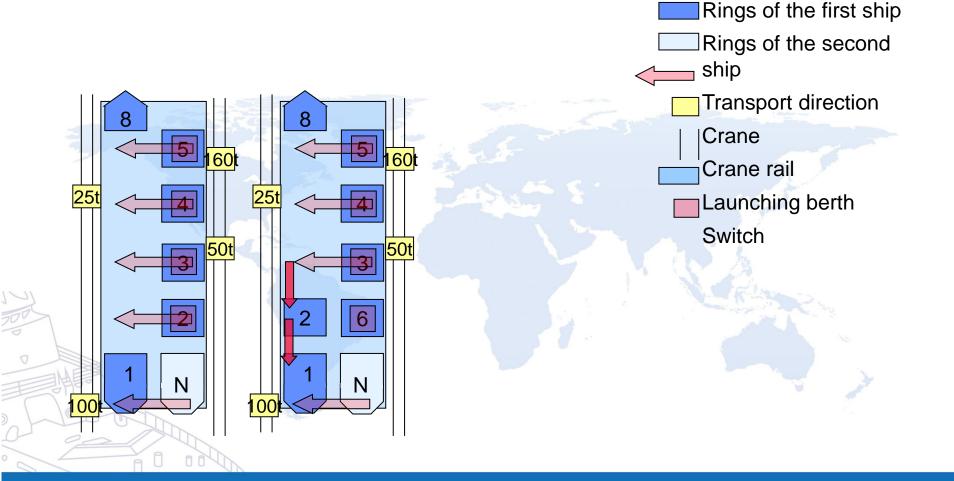
Solution 6 Variant 1: Assembly of two ships parallel 1



Solution 6 Variant 1a: Assembly of two ships parallel with ring assembly 1

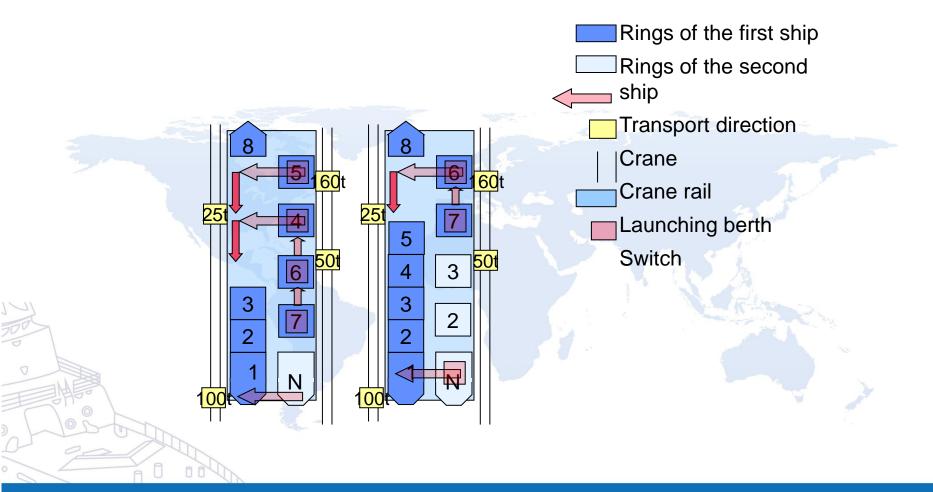
Solution 6 Variant 2: Ring assembly procedure

- The stern ship will be produced on the ring assembly areas (launching berth 2) and after the finished production the stern ship will be transported immediately to the final assembly area (launching berth 1)
- The rings will be produced by a sequenced production on the ring assembly areas (launching berth 2) due to the assembly sequence on the final assembly area (launching berth 1). Afterwards they will be assembled in a defined order to the stern ship on the final assembly area (launching berth 1)



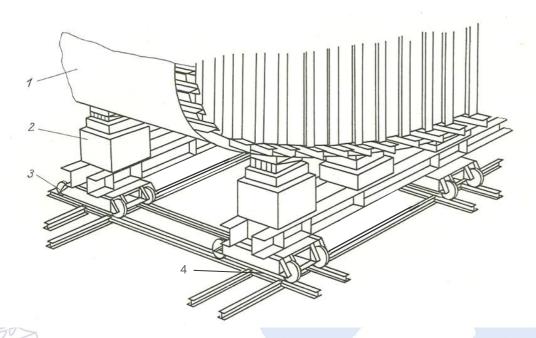
Solution 6 Variant 2: Ring assembly

- •The launching berth 1 is the final assembly area
- •The launching berth 2 is ring section assembly area
- •The launching berth 2 consist of:
 - 4 middle ship ring assembly workplaces
 - 1 stern ship workplace
- •The tanker of the shipyard consist of 6 middle ship rings plus 1 stern ship plus 1 bow ship
- •The transport from the ring assembly area (launching berth 2) to the final assembly area (launching berth 1) is possible via 5 switches
 - 1 switch is allocated for the stern ship
 - 4 switch are allocated for the middle ship rings
- •The transport and the positioning of the rings on the final assembly area (launching berth 1) is done by a transport and positioning system
 - Setting the stern ship
 - Positioning the rings to the stern ship



Solution 6 Variant 2: Transport procedure 1

Solution 6 Variant 2: Transport procedure 2

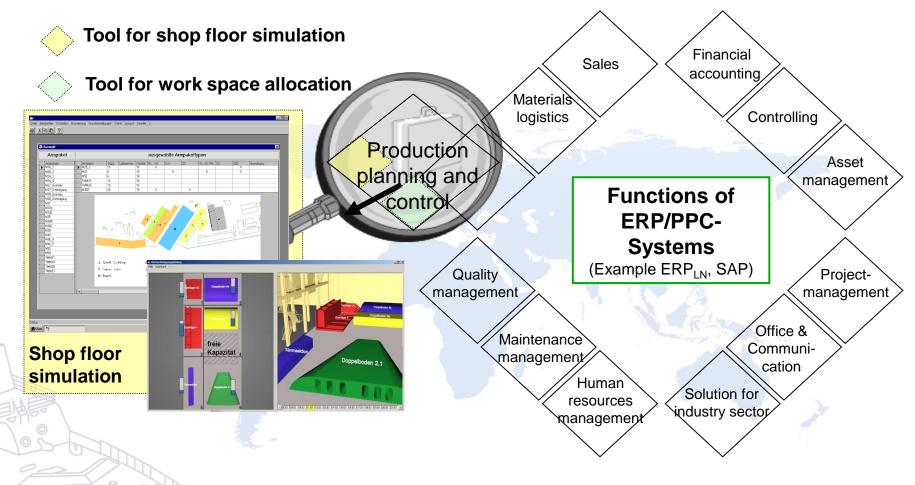


Solution 6 Variant 2: Estimation of the required duration and execution time 3

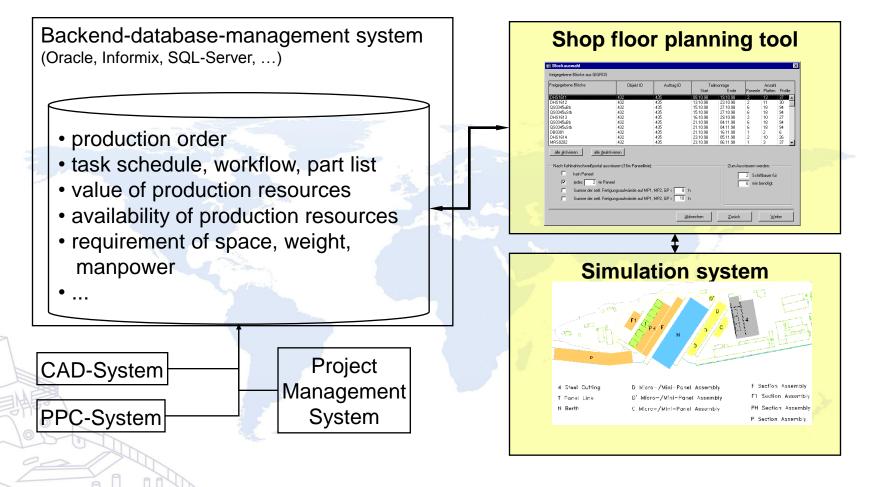
- The figures base on the know-how of Fraunhofer, literature and research projects of shipbuilding industry
- The closed manufacturing on the shipyard leads to a productivity growth of 20% in case of a climate independent fabrication.
- The implementation of mechanized welding leads to a longer working time of the welding torches
 - productivity growth up to 25% is possible
- Using a mechanized process the amount of required workers will be reduced.
 - The free workers will be replaced in a second and a third shift.
 - The new shifts leads to a productivity growth of 60% for the second shift and 40% for the third shift

Solution 6 Transport and positioning system 1

map ...: keel block pillar 1 module; 2 external stamps; 3 wheel sets for ride along and across; 4 cross The keel block pillar could changes his moving direction.

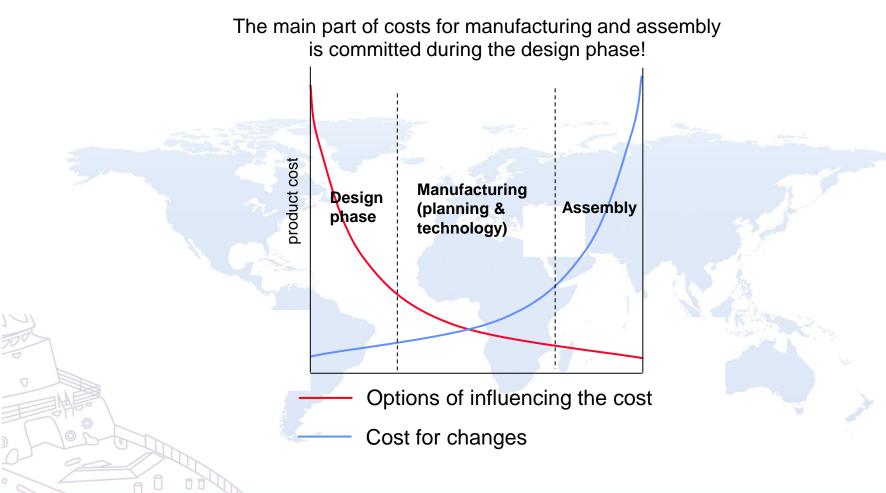

The external wheels are pivoted moveable and can be lifted and lowered.

A integrated cylinder can lift the keel block pillar for the new positioning of the wheels \rightarrow 90° rotation of the wheels on point


Solution 7 Implementation of shop floor simulation: PPC vs. Simulation

Solution 7

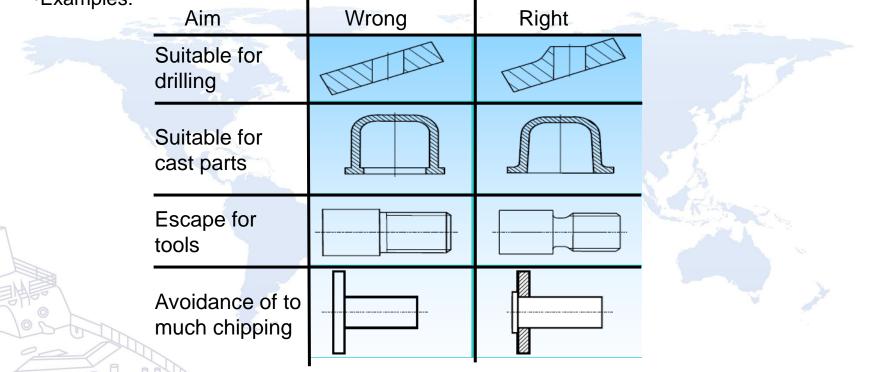
Implementation of shop floor simulation: Future scenario



Solution 8: Design requirements Agenda

Project requirements
Analysis of functional and spatial structures
Results of the concept phase
Solution 1: Accuracy Control
Solution 2: Part fabrication
Solution 3: Panel fabrication
Solution 4: Outfitting
Solution 5: Section assembly
Solution 6: Ring and final assembly
Solution 7: Organisation
Solution 8: Design requirements
Final layout
Roadmap of implementation
Productivity analysis

Solution 8 Design requirements



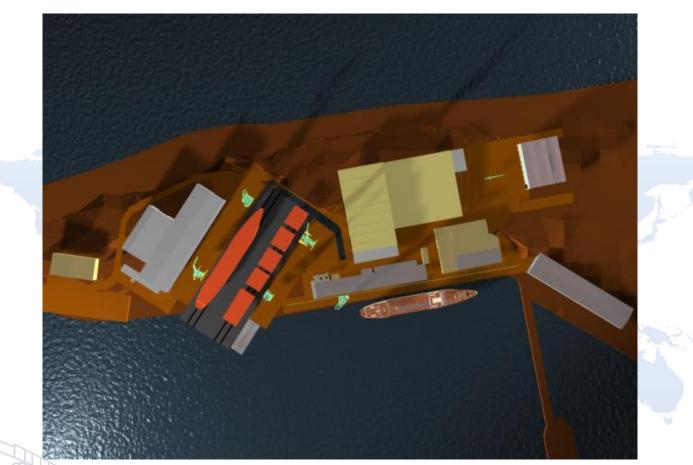
Solution 8 Standardisation - Design for manufacturing

•Several style guides are the result of the different manufacturing processes

•During the design process of parts these style guides must be allowed

•Examples:

0 0


Final layout Agenda

Pr	roject requirements
Ar	nalysis of functional and spatial structures
R	esults of the concept phase
	Solution 1: Accuracy Control
	Solution 2: Part fabrication
3	Solution 3: Panel fabrication
	Solution 4: Outfitting
	Solution 5: Section assembly
	Solution 6: Ring and final assembly
	Solution 7: Organisation
	Solution 8: Design requirements
Fi	nal layout
PI	roductivity analysis
Alter Los	
ent	

0 0

Final layout Overview

Productivity analysis Agenda

	Project requi	rements	
	Analysis of fu	inctional and spatial structures	
	Results of the	e concept phase	
		Solution 1: Accuracy Control	
		Solution 2: Part fabrication	
		Solution 3: Panel fabrication	and the second
		Solution 4: Outfitting	
		Solution 5: Section assembly	and and
		Solution 6: Ring and final assembly	- State
		Solution 7: Organisation	
		Solution 8: Design requirements	
	Final layout		A State
	Productivity	analysis	
	1		
- Co Co			

Productivity analysis Additional notes

The investments in the micro panel line and in the upgrade of the panel line are required due to the limited capacities of the panel and section assembly area
→ without the investment the shipyard will require a large area for micro panel assembly and open section assembly because of

- Production in shifts is not possible
- Outside welding depends on the climate conditions
- Mechanised welding will achieve a productivity growth of approx . 25%
- Increased output to 5 ships

•The total output can be increased to 6 ships in consideration of having the full process under control

- Section can be produced outside \rightarrow additional area is required
- Rings can be erected with a higher input of workers → organised production planning is required
- Duration for fitting the rings can be reduced with a higher input of workers → organised production planning is required

 \rightarrow The targeted aim of the shipyard to produce 4 ships is realisable