

A FRIGATE IN TEN YEARS – CHALLENGES AND OPPORTUNITIES

Thomas Lamb

These approaches range as follows:

- purchasing the complete new ship(s) from an experienced foreign naval shipbuilder,
- purchasing the complete ship(s) based on an existing design from experienced foreign naval shipbuilder,
- contracting with an experienced foreign naval shipbuilder to either prepare a new design or to select an existing design and to for them to build the first ship with the acquiring country building all remaining ships with technical assistance from the selected shipbuilder,
- 4. purchasing an existing design and technical assistance from a foreign shipbuilder but building all the ships in the acquiring country, and
- 5. finally, designing from scratch and building in the acquiring country.

Projected Military Ship Production, 2003–2012

Source RAND Report

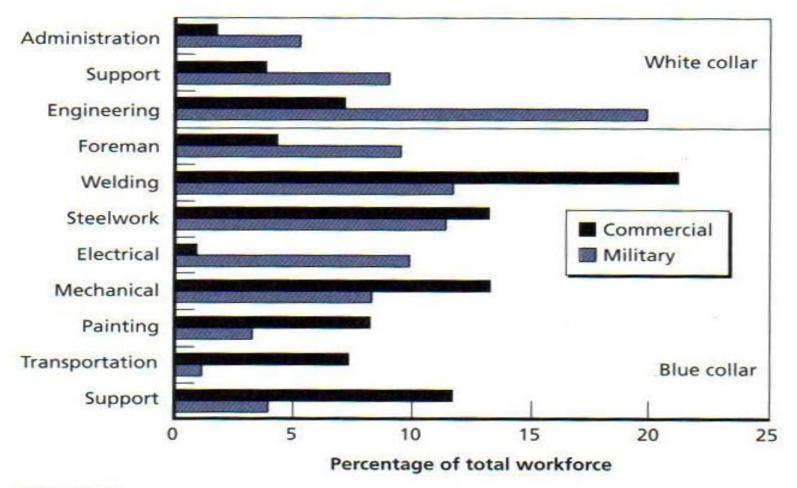
	Export			Domestic Use		
	Number	Value (\$ millions)	LSW Tons	Number	Value (\$ millions)	LSW Tons
Germany	56	10,713	96,040	21	5,799	44,144
France	25	6,405	47,570	17	13,015	146,302
Russia	20	5,000	36,025	0	0	0
Spain	6	2,035	31,343	7	2,195	26,735
The Netherlands	9	1,780	8,500	4	1,585	24,759
United Kingdom	2	650	3,000	22	17,340	235,140
United States	2	53	174	66	56,172	776,446
South Korea	1	30	1,500	7	4,905	24,500
Japan	0	0	0	16	11,090	79,125
Italy	0	0	0	18	5,289	75,170
China	0	0	0	8	3,230	26,875
Australia	0	0	0	1	650	3,051
Sweden	0	0	0	3	375	1,431
Taiwan	0	0	0	1	320	2,769
Israel	0	0	0	11	55	550
Total	121	26,666	224,152	202	122,020	1,466,997
Not Reported	23 vesse LSW.	els valued at	\$13,225 mil	lion and dis	placing 86,2	91 tons

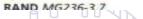
Comparison of Military and Commercial Ship Cost

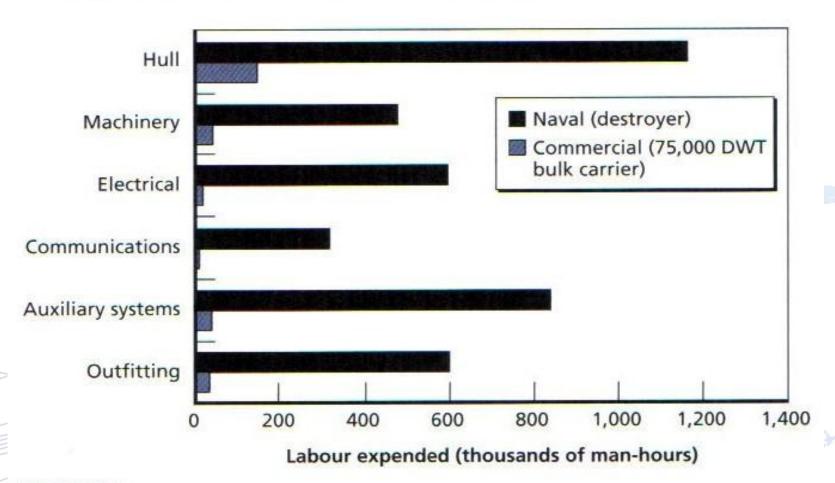
Source RAND Report

Military			
SSK	Type 212A (German Navy)	346,667	
	Type 214 (export)	323,529	
	Scorpene (export)	141,379	
	Type 209-1400 (export)	103,164	
SSN	Virginia class	250,000	
	Astute	184,615	
Aircraft carriers	WASP LHD	69,767	
	CVN 77	67,004	
Destroyers	DDG 51 class	167,644	
	Project 093 (Chinese)	153,846	
	Type 45	141,343	
	Project Horizon	122,000	
Frigates and corvettes	Multimission Frigate (French Navy)	70,833	
	MEKO ANZAK	100,156	
	La Fayette (export)	122,807	
Patrol	UK OPV for Brunei	216,667	
	MEKO A-100 (export)	17,625	
Commercial			
World Market	Cruise ship	10,000	
	Chemical product tanker (small)	2,838	
	Container ship	3,100	
	Oil product carrier	1,630	
	Bulk carrier (small)	1,259	
	Bulk carrier (medium)	884	
	Crude oil tanker (medium)	2,203	
United States	Jones Act crude oil tanker (medium)	6,925	

FREM Frigate




British TYPE 26 Frigate


Distribution of Skills Available Differs Between Commercial and Military Construction Yards

Military Ship Construction Requires a Much Larger Workforce

RAND MG236-3.5

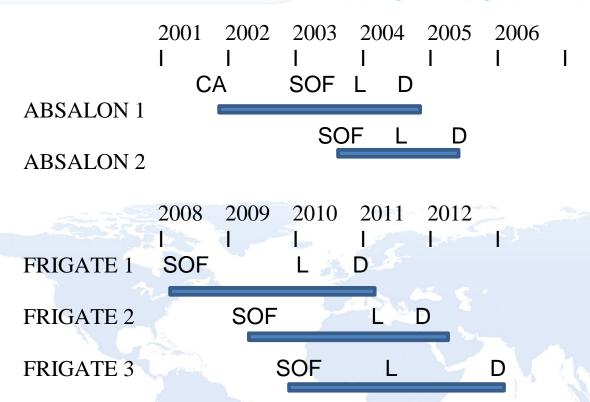
CD - CONCEPT DECISION

ICD - INITIAL CAPABILITIES DOCUMENT

CDD - CAPABILITIES DEVELOPMENT

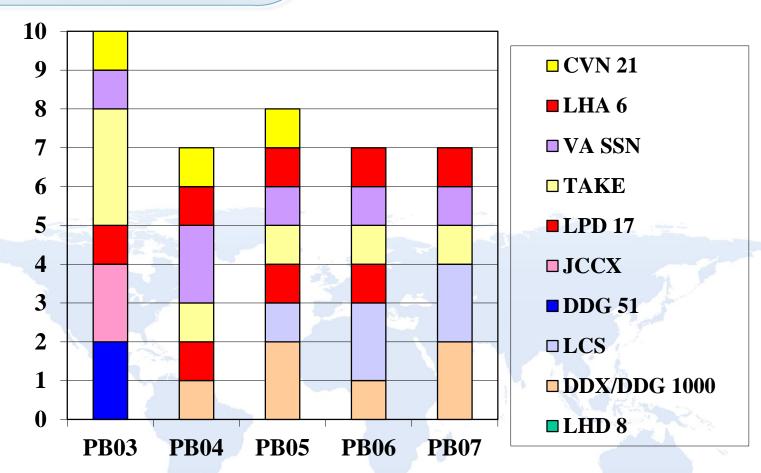
DOCUMENT

COMPARISON OF SCHEDULES


Typical schedule for First of Class Naval Combatant is 10 to 16 years.

For a cruise ship typical schedule is 3 to 4 years' For a commercial ship (not Cruise Ship) typical schedule is 1 to 2 years.

Recent Danish Frigate Program broke the mold!


DANISH FRIGATE PROGRAM SCHEDULE

First ship contract Award to Start of Fabrication 14 months Start of Fabrication to Delivery 20 months (<2 years)

Follow on Frigates construction time 3 years

US LCS 2 Trimaran

ParaMarine Frigate Design

HOW DOES THIS AFFECT COLOMBIA

The presentation has deliberately been generic in that the contents apply to any country. How does it all affect Colombia?

Fortunately Colombia is NOT just entering shipbuilding. In COTECMAR it has a significant shipbuilding capability that has been built up over the past decade.

Throughout this time it has focused on having a strong design and development capability which has tackled more complex ships such as the OPVs and continually improved its knowledge in ship design and shipbuilding processes.

It also has universities that offer naval architecture education and is currently implementing advanced graduate studies.

This obviously reduces the challenges and thus risks discussed above, but there is still a level of challenges and many opportunities for the country in expanding the shipbuilding capability and all the related support that goes with this, such as university education and worker training.

SHIP ACQUISITION SOURCE APPROACH SUMMARY

APPROACH	DESCRIPTION	CHALLENGES	OPPORTUNITIES	RISK
1 Complete Purchase		Normal new program for foreign	None for acquiring country not even	Next
	New Design	shipbuilder	technology transfer	Lowest
2	Complete Purchase	Design may not meet requirements	Same as 1 but fastest acquisition of	Lowest
	Existing Design	and thus need significant change	ships	
3	Foreign Design and	How to develop workers with the	Saving in total cost IF acquiring	Medium
	First Ship Build	required skills	country's labor rate is significantly	
			lower than experienced shipbuilder rate.	
			Learning in foreign shipyard and time	
	- Table		to buildup own work force	
4	Foreign existing or new	How to overcome lack of	Saving in total cost IF acquiring	High
	Design	experienced and skilled workers	country's labor rate is significantly	
	Self-Build		lower than experienced shipbuilder rate.	
			Long term development of shipbuilding	
	3		capability	
5	Self-Design Self-Build	Significant	Saving in total cost IF acquiring	Highest
		All challenges discussed	country's labor rate is significantly	
			lower than experienced shipbuilder rate.	
			To join with other countries who need	
			naval ship to share development cost	
			and provide more resources.	
			Long term development of shipbuilding	
			capability	10

CONCLUSION

From the cost aspect, if the acquiring labor rate is significantly lower (say 1/3) than existing naval shipbuilders' labor rate then there is a potential of 45% saving in labor cost or 25% of total ship cost. This would NOT be achieved for the first or second ships but for the follow on ships. This is a significant reason for building the naval ship in the acquiring county.

The preparing of a new ship design and engineering by the acquiring country designers offers the greatest long term capability generating opportunity but it also is a high risk approach.

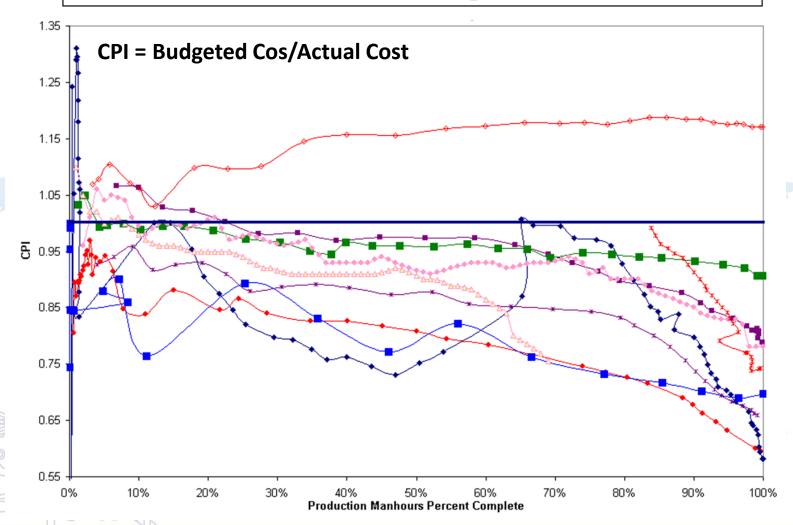
Approach #4 offers the best compromise in that it has the lowest design risk (even if extensive changes are made to arrangements and weapons) and it offers the best potential for improving the acquiring country's shipbuilding capability.

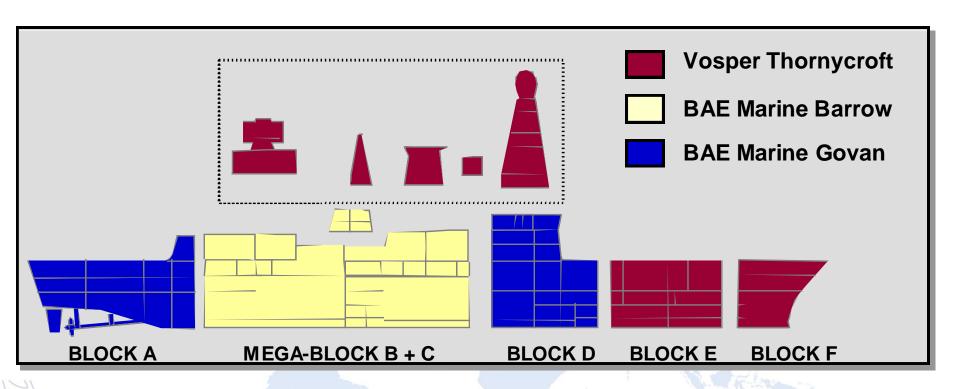
However, the introduction of politics will affect the final choice.

The final advice is:

PLAN THE WORK, WORK THE PLAN

Do not continuously change or arbitrarily deviate from the plan.


Do not start construction until the design is mature (> 80% Complete)


BACK UP SLIDES

Historical Lead Ship CPI Trends

UK MOD TYPE 45 SHIP GRAND BLOCK BREAKDOWN

3rd INTERNATIONAL SHIP TYPE 45 SHIP BOW GRAND BLOCK DESIGN & NAVAL ENGINEERING CONGRESS

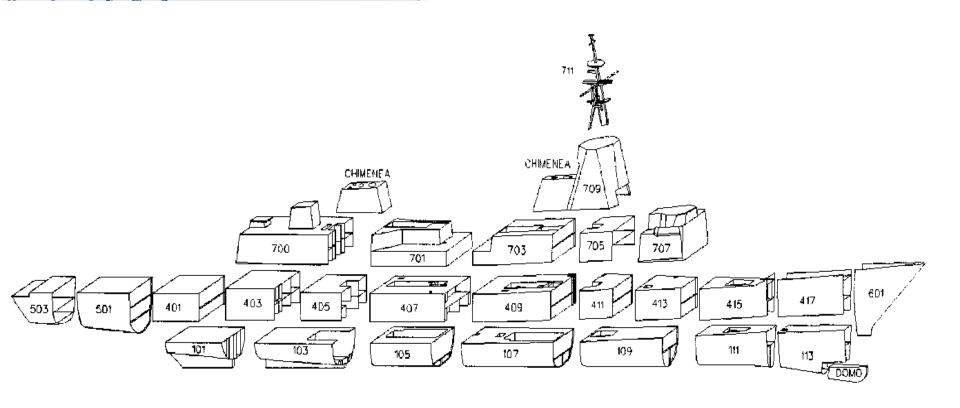
JULY 18-28, 2011

UK MOPATYPEASASHIPABOM GRAND BLOCK

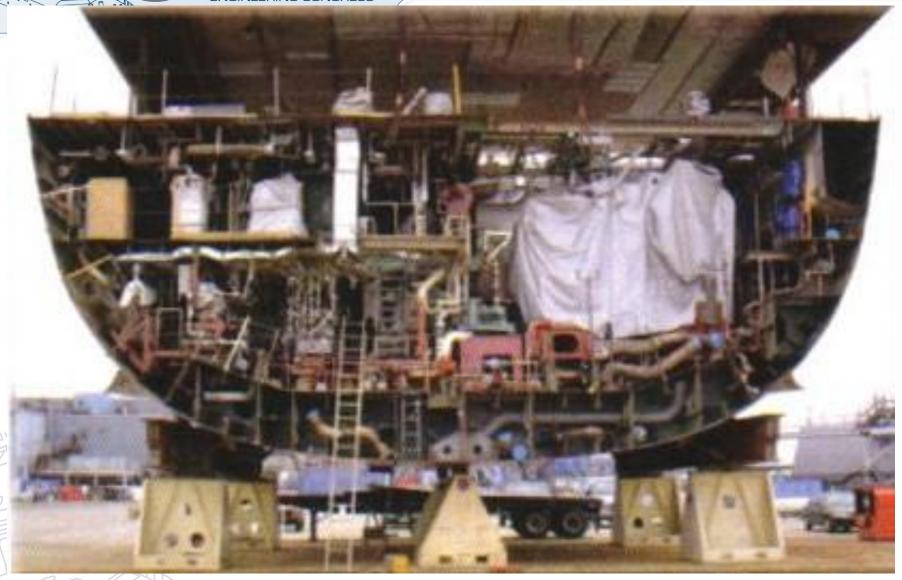
JULY 18-28, 2011

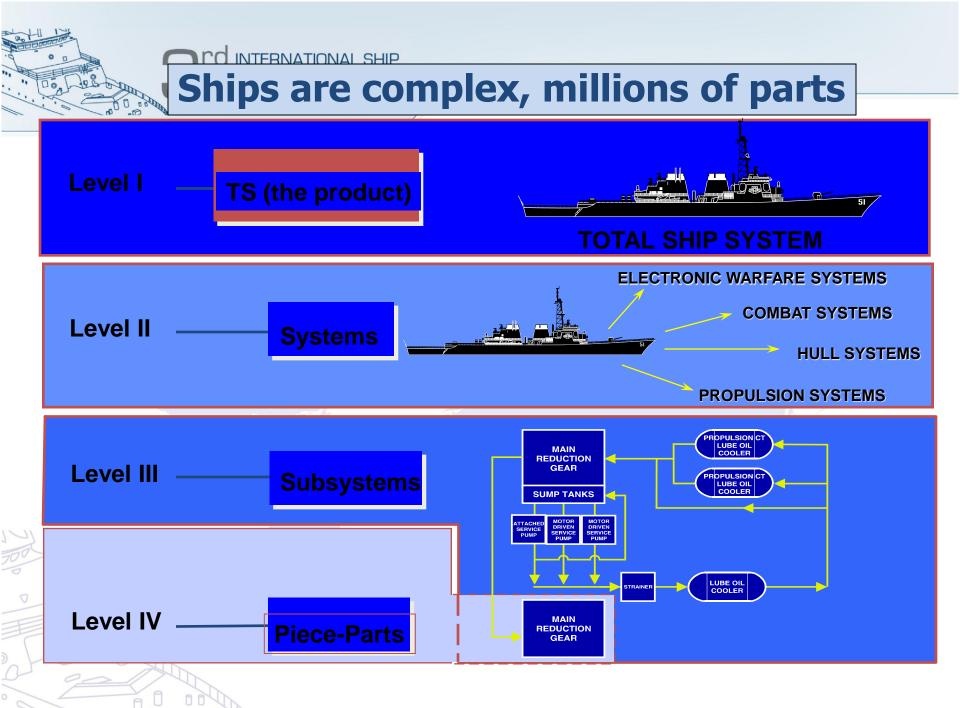
COLOMBIA/COTECMAR

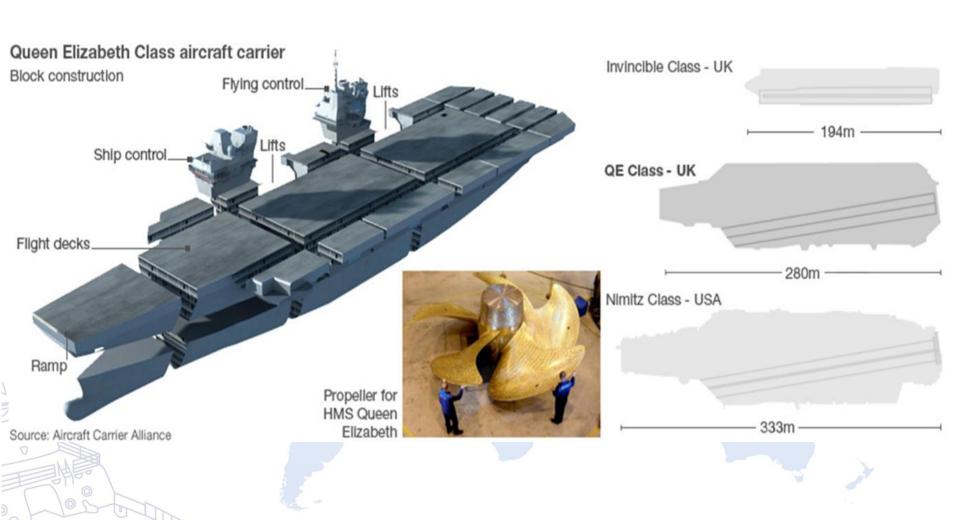
BOY SECTION WIKE TYPE 45 DESTROYER DESIGN & NAVAL ENGINEERING CONGRESS



COMPLETED UK TYPE 45 DESTROYER DESIGN & NAVAL ENGINEERING CONGRESS


JULY 18-28, 2011


Spanishes Michaelship Engineering congress Spanishes Michaelship Engineering congress



NAVALOSHIP ON BLOCK OUTFITTING DESIGN & NAVAL ENGINEERING CONGRESS

