

FA

Caterpillar Propulsion

Emil Cerdier Sales Manager - Americas

Caterpillar Propulsion

•Former BERG Propulsion started in 1912

- •Controllable pitch propulsion 1929
- •Over 6000 propulsion units delivered

Caterpillar Propulsion Facilities

Headquarters, Sweden

New sales production, Sweden

New sales production, Singapore

Aftersales production Sweden

Caterpillar Confidential Yellow

EXPERIENCE AND HYDRODYNAMIC EFFECTS OF OPERATING TWIN SCREW VESSELS WITH FEATHERING PROPELLERS DURING SLOW STEAMING

Propulsion Concepts – Slow Steaming

BAT

Propulsion Concepts – Slow Steaming

BAI

Propulsion Concepts – Slow Steaming

BAI

Feathering minimizing drag and resistance

Locked propeller shaft with full pitch ahead.

Locked propeller shaft with feathering.

Self-milling.

CURRENT POWER AND PROPULSION CRITERIA

Equipment selection focused on contractual requirements:

- Bollard pull
- Sea trial speed

But these meet only some of the operational requirements, and just a small percentage of the operational time.

AHTS OPERATIONAL PROFILE

IS THE DESIGN OPTIMIZED?

1800 10000 9000 1600 8000 1400 Total (ekW+kW) 7000 Power output 1200 6000 Time 1000 [l] 800 III 5000 4000 600 3000 400 2000 200 1000 0 0 Anchor handling 80Tons Bollard pull 150Tons Standby Economy 9kts Cruizing 12kts Anchored DP medium Towing 65Tons

Full power bollard pull

- Only 3% of the time
- Only 5% of fuel costs

IS THE DESIGN OPTIMIZED?

1800 10000 9000 1600 8000 1400 Most of the Total (ekW+kW) 7000 operation Power output 1200 -Time 6000 1000 [l] 800 III 5000 4000 600 3000 400 2000 200 1000 0 0 Anchor handling 80Tons Bollard pull 150Tons Standby Economy 9kts Cruizing 12kts DP medium Towing 65Tons Anchored

Full power bollard pull

- Only 3% of the time
- Only 5% of fuel costs

BUILDING BLOCK 1: ENGINE DATA

Example: Two engines with approximatly the same power output

BUILDING BLOCK 2: PROPELLER/HULL INTERACTION

REQUIREMENT BASED PROFILE: METHODOLOGY

Caterpillar's Efficiency Workshop tool streamlines this benchmarking

INTRODUCING THE TEST SUBJECT: 160T AHTS

Operational mode	Requirement	Time
Economy Speed	9kts	6%
Cruising	11kts	18%
Fast Transit	13kts	6%
Standby	2kts current, 5kts wind speed	20%
Dynamic position	2kts current, 10kts wind speed, DP2	20%
Towing	5kts speed, 70T force	9%
Anchor handling	2kts, 110T pull, 20T tunnel thrusters	6%
Anchored	Hotel load	15%

Requirements Min 160T Bollard Pull 13kts speed 75m DP 2 8000h/year

STANDARD DESIGN

160T AHTS

- 2 x MaK 9 M 32 C engines @ 4500kW
- 2 x 4.2m main CP propellers

STANDARD DESIGN

Transit and standby mode

- 50% of the time
- 48% of fuel costs

Both engines used but inefficient at 30% average load.

INTRODUCING FEATHERING

1000 **Consumption** [Tons] 900 800 700 • 17% lower fuel costs 600 • 28% lower 500 maintenance costs 400 300 200 100 0 FCONOM ONES 1145 Standby nedium 1010ms 1010ms Anchored Predium Cruising 145 Standby Redium 1010ms Anchored Anchored Anchored Anchored Mechanic: 2x9M32C Mechanic: 2x9M32C + Feathering

References

Heavy Lift Vessel

Patrol Boat

Nuclear Fuel Carrier

AHTS

+ Product and Chemical tankers, sailing yachts, RO-PAX ferries, Tugs and more.

Main Conclusions

- Feathering can be applied to any vessel with more than one propulsion unit and with controllable pitch propellers
- Feathering increases efficiency and flexibility
- Caterpillar Propulsion has a large Reference list with feathering MPP

谢谢	ありがとうございました ^{Bedankt}					
	Děkuji	СПАСИ	БО	MERCI		
GR	AZIE	THANK Y	00!	TACK		
	OBRIGADO	GRAC	IAS			
		DZIĘk	(UJĘ T	ERIMA KASIH		
KÖSZ	ZÖNJÜK	감사	நன்றீ	DANKE		

