A New Concept for the Construction of River Transportation Barges Using The Innovative Sandwich Plate System Technology

Fabio Zapata, Technical Director, Khalela S.A.S.
Martin Brooking, Marine Director, Intelligent Engineering (UK) Ltd.
Agenda

- Introduction to SPS technology
- Common Applications of SPS
- SPS Construction of River Transportation Barges
- Conclusions and discussion
Introduction to SPS Technology
Concept and Terminology

- Two steel plates bonded to a solid elastomer core
- Continuous elastomer support to steel precludes local buckling
- SPS 4-25-4: expresses the sandwich elements thickness in mm
- Patented system
Introduction to SPS Technology

SPS Core Business

Shipbuilding
- All elements of a ship or maritime structure: hull plating, decks, bulkheads
- Areas requiring special protection from impact, explosion and fire

SPS Overlay - Repair & Conversion
- All areas of ship structure
- Fast installation, minimises labour and saves vessel downtime

Civil Engineering
- Bridges, stadia, flooring system 75% lighter than concrete
- Prefabricated, very fast to erect, with a long service life
Introduction to SPS Technology
Marine Application Examples

- Hull Structures and Tank Tops
- Vehicle Deck Repairs
- Hatch Cover Construction
- Side-shell collision protection
- Specialist Blast Protection
- Helideck Upgrades
Introduction to SPS Technology

Regulatory and Class Approvals

- Proven and predictable characteristics with over 10,000 tests completed
- Nearly 300 Class approved projects
- More than 300,000m² of SPS
- Flag and Classification societies:
 - USCG
 - MCA (A60)
 - Danish MA (A60)
 - Swedish MA (A60)
 - Marshall Islands
 - Transport Canada

- LR Class rules for the design and construction of SPS structures published in March 2006 – new updates due shortly.
- DNV Class Note 30.11 released 2013.
- ABS working on Rule requirements.
Introduction to SPS Technology

Established Track Record

- Proven reliability of SPS structures in a wide range of applications
- Recognised and chosen as a superior solution among various owners
Introduction to SPS Technology

Benefits

Reduced costs
- Simplified structures with reduced construction costs
- Improved space utilisation
- Enhanced fatigue and corrosion resistance
- Reduced through-life maintenance

Safer structures
- Resistant to impacts from grabs and heavy cargo
- Reduced risk of puncture and crack propagation
- Enhanced fire protection: A60, H60 and J30 certification

Better working environment
- Built-in damping to reduce structure borne noise and vibration
- Reduced fatigue damage

Enhanced blast, ballistics and fire protection
- Improved safety for crew and equipment
Introduction to SPS Technology

Two ways to make SPS structures

1. Prefabricated SPS panels: factory injection & on-site assembly

2. SPS Overlay: on-site injection, using existing structure
Introduction to SPS Technology

SPS Overlay installation process
Common applications of SPS

Ships

Vehicle decks on ferries and ro-ro ships
- SPS is fast and easy to apply
- Shortens repair schedule by 60%, saving time and cost
- Long-lasting repairs requiring reduced maintenance

SPS Bulk carrier tank tops
- Stay flat:
 - Extending service life and reducing maintenance costs
 - Faster unloading and ship turn-round
 - Reduced corrosion, longer lasting coatings
Common applications of SPS
Offshore structures

Side protection for FPSO
- High performance alternative to double hull
- Protects hull from collision impacts with Offshore Supply Vessels
- Meets MEPC guidelines for the application of MARPOL requirements

Blast and fire proof escape tunnel for FPSO
- Explosion and jet-fire proof
- Provides safe refuge and protected escape route in emergencies
- Constructed at Hyundai for BP
- Verified by Lloyd’s Register
Double hulls on inland waterways vessels will impact badly on economics and safety

- Double hulls are more costly to build and maintain than single hull
- Double hulls reduce cargo capacity - by up to 40%
- Reduced capacity leads to increased numbers of barges; increasing the risk of collision and pollution.
- Higher operating costs of double hull will push cargo movements to trucks, placing the road network under higher stress.

SPS provides a safe and economic solution:

- Two layers of steel separated by a polyurethane core = Compact Double Hull (CDH)
- Equivalent collision/grounding protection to double hull
- Negligible reduction in cargo capacity
- Fast and easy to construct
SPS Construction of River Transportation Barges

SPS construction

- Simplified design – eliminates secondary stiffeners
- Fewer components – faster and easier to construct
- Longer lasting – better resistance to collisions, corrosion and fatigue
- Smooth internal structures – faster and easier to empty and clean tanks between cargoes

Conventional steel hull with internal stiffeners
SPS hull with smooth internal surfaces – easy to clean and maintain
Example SPS river barge. In service since 2005
SPS Construction of River Transportation Barges
The Application of SPS to the Construction of River Transportation Barges – example design
Conclusions

- SPS is a proven technology – fully tested and approved
- SPS offers superior advantages over conventional solutions
 - Structural simplicity and cost-effective construction
 - Enhanced protection against impact, blast and fire
 - Longer lasting structures with reduced maintenance and lower lifetime costs
- Double-hull on inland waterways vessels will impact badly on economics and safety.
- SPS (Compact Double Hull) offers equivalent safety, but retains maximum cargo capacity.
- Use of SPS technology is available for inland transportation barges and can be used on both tank and dry cargo vessels.
IV CONGRESO INTERNACIONAL DE DISEÑO E INGENIERÍA NAVAL
11 - 13 DE MARZO DE 2015