The Application of Survivability to Warship Design in the Modern Naval Environment

Presented by Peter Worthington

IV International Ship Design & Naval Engineering Congress, Cartagena, Columbia

12th March 2015
Survivability

Survivability is a key requirement in warship design

• Definition of survivability
• BAE Systems early design approach
• Effect on naval platform
What is Survivability?

- Survivability is commonly expressed as a function of three factors:
 - Susceptibility: The probability of being hit
 - Vulnerability: The probability of being disabled by a hit
 - Recoverability: The probability of restoration after being hit
Threats

Above Water
- Missiles
- Bombs
- Shellfire
- Gunfire

Underwater
- Torpedoes
- Mines

Asymmetric
- Anything else!
INS Hanit - 2007 (Missile)
ROKS Cheonan – 2010 (Torpedo)
USS Cole - 2000 (Explosive charge in close proximity)
Survivability Timeline of Incident

- Susceptibility
- Vulnerability
- Recoverability

- Immediate Damage from Incident
- Secondary Damage post Incident
- Initial Recovery
- Secondary Recovery
- Ongoing Capability
SUSCEPTIBILITY
Platform Susceptibility

Focussed around signatures:

- Radar
- Infra Red
- Noise / Acoustic
- Electromagnetic / Magnetic
- Pressure
- Wake
- Visual
- Decoys
Radar Signature Control

1. Sectional Shaping
 - Construct ship from large flat panels.
 - Angle topside panels at least ± 5° to vertical.
 - Avoid reflective dihedrals - all internal angles >= 97°.
 - Ensure bridge windows are radar reflective
 - Use modelling to optimise signature

2. Micro-geometry reduction
 - Install an “integrated” mast.
 - Enclose/screen mooring decks.
 - Relocate upper deck equipment inside the superstructure e.g. junction boxes.
 - Install bulwarks to hide equipment that can not be relocated.
 - Use radar transparent material e.g. GRP deck stanchions and ladders
 - Screen openings and recesses with doors

3. Radar Absorbent Materials
 - Must be used with modelling to get most benefit
 - Can be used to reduce reflections from own radar
 - Expensive and makes structure repair difficult
Infrared Signature Reduction

- Utilise existent ship systems
 - Use Ship’s own NBC wash-down system to reduce signature
- Insulation
 - Insulate ship sides and deck instead of machinery spaces
- Heat reflective paint
 - Solar reflective paints
 - IR reflective paints
- Exhaust temperature reduction
 - Side exhaust with water injection (not always suitable for smaller vessels due to engine backpressure)
 - Direct exhaust cooling
Acoustic Signature Reduction

Main sources of underwater radiated noise (URN)

1. Airborne noise
 - Reduce radiating noise sources
 - Install acoustic insulation or enclosures

2. Structureborne noise
 - Isolate rotating machinery using flexible mounts
 - Consider double mounting equipment on rafts

3. Fluid noise
 - Eliminate unsteady flow around hull
 - Avoid knuckles and steps in hullform
 - Consider flow around sea inlets, thruster tunnels, sonars etc.
 - Use paint flow tests and CFD modelling to highlight areas of flow instability and separation
 - Ensure all hull appendages are accurately aligned with the local flow
 - Eliminate unsteady fluid flow within system pipework e.g. HPSW
Acoustic Signature Reduction

4. Propeller noise
 - Ensure steady wake field in the propeller disk
 - Minimise shaft / bracket wake shadows
 - Align shaft bracket struts with the flow
 - Reduce pressure pulses
 - generous hull clearance
 - blade skew
 - Limit cavitation
 - blade sections
 - blade finish and accuracy
 - Eliminate singing
 - trailing edge geometry

5. Important to set noise budgets!

6. Use modelling to manage and track progress against budget(s)

Note: Example spectrum
Example - Fluid Flow Noise Sources

- When fluid flows through pipes, noise is generated.
- When flow becomes turbulent, noise increases.
- If a tight elbow is encountered then as flow separates from pipe wall, a rapid pressure drop created that leads to cavitation.
- Most valves will generate cavitation and flow noise, under certain conditions.
- Pipe wall discontinuities will cause cavitation and poor flow, in certain circumstances.
Example - Noise from Pipe Bend

- Empirical formulae used for initial analysis of pipework features such as bends - generally larger bend radii improve URN
- Conditions of flow velocity & bend radii of specific features modelled using CFD
- Analysis provides the basis for informed design trade offs between pipe diameter, bend radius and flow velocity.
- Minimises the impact on platform design without compromising URN performance.
Electromagnetic/Magnetic Signature Reduction

- Signature reduction systems include
 - Magnetic treatments - reduce the ship’s signature. Although not permanent
 - Wiping
 - De-perming
 - Degaussing systems
 - 2D or 3D systems
 - Magnetometer or gyro control
 - Impressed current cathodic protection (ICCP)
 - Balancing this system can be used to minimise the magnetic signature
 - Active shaft grounding systems
 - Used to reduce the alternating magnetic and electric fields generated by the interaction between the ICCP and the rotating shaft / propeller blades

- Systems have to work together
Vulnerability

The intrinsic capability to resist damage within the moment of the incident.

Effects include:
- Blast
- Fragments
- Residual Strength
- Shock
- Fire / Smoke

Mitigated by design.
Blast Resistance

- **Austenitic welding**
 - All watertight bulkheads
 - High value compartments operations, machinery control rooms etc.
 - High risk compartments gunbays and, magazines etc.

- **Blast Resistant Bulkheads**
 - Minimum - All zone bulkheads
 - Measures **must** be used conjunction with blast resistance doors
Fragmentation Damage

- **Ballistic protect compartments where**
 - High numbers of crew are located
 - High value / skilled crew are located
 - Equipment essential to the ships mission

- **Typical compartments**
 - Operations room, mission spaces, bridge, radar & chart rooms
 - Communications equipment and offices
 - Main, mission and air weapons magazines
 - Machinery control room (as this normally also doubles as the DCHQ)
 - Weapons related electrical and mechanical equipment rooms
 - Gunbay (because of locally stored ammunition)

- **Use layout to protect compartments**
 - Difficult to achieve on OPV due to lack on beam
 - Ensure magazines are as low as practical
Residual Strength - Box Girders

- An OPV can only realistically withstand small to medium missile strike i.e. Sea Suka or Hell Fire

- To be effective the box girders must
 - Extend over at least 60% of ship’s length
 - Be effectively tied into the ship’s structure
 - Constructed from high strength steel (yield stress 390 MPa)

- Difficult to replace transverse moment

- Box keel considered impractical on OPV

- Weight increase in the region of 40te
Shock Resistance

- Shock mounting
 - May be detrimental to underwater radiated noise signature
 - Requires flexible connections

- Shock hardening
 - Avoid the use of grey cast iron and other brittle materials
 - Avoid cantilevered or overhanging components (turbocharges etc.)

- Raft mounting
 - Multiple components on single raft
 - Increased space and weight requirements
Shock Resistance

- Propulsion System

Typical Shaftline

Shock Hardened Shaftline
Fire Insulation

- **Advantages**
 - Enhanced fire protection for the ship reducing reliance on crew intervention
 - Increased duty of care to the crew
 - Goes beyond SOLAS to protect high value compartments

- **Challenges**
 - Very prescriptive regulations
 - Additional boundaries required due to ship layout
 - Additional divisions / fire doors around stairways
 - Need to pay attention to detail - particularly bulkhead penetrations
 - Conflicting rules - NBC air recirculation, boundary cooling
Equipment Redundancy and Separation

- Two totally independent power generation and propulsion systems.
 - Ideally with physical separation

- Physical separation or duplication of command and control systems and compartments.
 - Likely to be of limited effectiveness due to length of ship. Maximum separation only 40m
 - Unlikely to have sufficient room for secondary operation room
 - Split silos, relocate some servers
 - Installation of additional consoles around the ship
 - Duplication and protection of data highways

- Use of multifunction equipment
 - Multifunction and duel use consoles
 - Reversionary modes. Nav. radar providing limited backup to main radar
RECOVERABILITY
Recoverability

The capability to recover functionality following an incident.

Platform Design

- DCHQ1 and DCHQ2 require to well separated.
- Large displays and integrated communications allows effective co-ordination of information
- Damage control and monitoring systems allow everyone to see the same DC picture
- Prioritisation of recoverability activities

Containment

- Peacetime scenario – Ship not closed down versus
- Battle Damage Scenario – Ship closed down
 - Damage Control Zones (A60 Boundaries)
 - Watertight Boundaries
- PMS used to monitor system boundary integrity
Automated Recoverability

Automated recoverability actions following incident include:

- Automated fire protection systems such as CO2, AFFF and HPFFM spray systems.
- Embedded systems such as fast ACOS can provide an uninterrupted alternate electrical supply to key equipments.
- Electrical management systems to shed loads in order to maintain supply to essential equipments.
- Electrical Propulsion management systems preventing under frequency and the subsequent overall platform failure.
- Intelligent Fluid Systems, such as DINCS, can automatically
 - isolate damage
 - reconfigure fluid systems to supply key equipments
 - maintain a credible fight through capability.
Battle Damage Repair

Manual process whereby:

• Shoring up of the ships structure e.g. bulkheads
• Manual isolation, reconfiguration or reconnection of systems
• Re-establishing electrical power is crucial
• PMS used to monitor system configuration and integrity
• DCHQ - BDR Party communication crucial to success
Example - DINCS Automated Recoverability

DINCS applied to networked fluid systems will:

- Reduce operator workload by
 - Detecting and isolating leaks
 - Reconfigure system iaw Command Aim
 - Balancing supply and demand
- Allow autonomous operation iaw Command Aim priorities
- Withstand damage to ship’s equipment controls and network
Managing Survivability

To maximise a platform’s survivability:

Susceptibility: Prevent the platform being hit:
 • Minimise signatures
 • Eliminate threat - hard kill, soft kill (or both?)

Vulnerability: During hit - minimise impact:
 • Redundancy
 • Separation
 • Blast resistant structure
 • Fragment protection

Recoverability: Following hit – maximise fight through capability
 • Minimise the time to manually recover functionality
 • Automated reconfiguration
In conclusion

- Holistic approach to survivability design and management offers greatest results.

- Survivability design features can be and are being successfully applied to all sizes of naval platform.

- Cost of implementing survivability measures are very moderate compared to the overall capital investment cost.

- BAE Systems has significant experience and knowledge of ship survivability.
Thank you
References

- Commander Kirk S. Lippold, USN Retired ‘Front Burner: Al Qaeda’s Attack on the USS Cole’ 2012, Public Affairs, Perseus Book Group